首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capabilities of ultraviolet femtosecond laser ablation inductively coupled plasma mass spectrometry (UV-fs-LA-ICPMS) for depth profile analysis of thin metal coatings were evaluated. A standard sample consisting of a single Cr thin layer of 500 nm +/- 5% on a Ni substrate was used. A fast washout was obtained by a high-efficiency aerosol dispersion ablation cell (V approximately 1 cm3), which allowed single-shot analysis with increased depth resolution. Laser ablation was performed in helium at atmospheric pressure conditions. A laser repetition rate of 1 Hz and low laser fluence (<0.5 J/cm2) were used. Very low ablation rates (<10 nm/pulse) were determined by atomic force microscopy (AFM). Information about the crater geometry and morphology was investigated using scanning electron microscopy and AFM. The depth resolution, calculated via the maximum slope of the tangent in the layer interface region, was smaller than 300 nm. Our data indicate that UV-fs-LA-ICPMS represents a powerful combination of high lateral and depth resolution for the analysis of thin metal coatings. Moreover, an overall ion yield, defined as the ratio of detected ions and ablated atoms, of approximately 5 x 10-5 was estimated for the chromium layer under the operating conditions chosen. The absolute amount of ablated material per laser pulse was approximately 1 pg, which corresponds to a detection limit of 180 microg/g.  相似文献   

2.
A novel method is presented for direct coupling of high-performance thin-layer chromatography (HPTLC) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the analysis of biomolecules. A first key feature is the use of a liquid matrix (glycerol), which provides a homogeneous wetting of the silica gel and a simple and fast MALDI preparation protocol. A second is the use of an Er:YAG infrared laser, which ablates layers of approximately 10-microm thickness of analyte-loaded silica gel and provides a soft desorption/ionization of even very labile analyte molecules. The orthogonal time-of-flight mass spectrometer employed in this study, finally provides a high accuracy of the mass determination, which is independent of any irregularity of the silica gel surface. The analytical potential of the method is demonstrated by the compositional mapping of a native GM3 (II(3)-alpha-Neu5Ac-LacCer) ganglioside mixture from cultured Chinese hamster ovary cells. The analysis is characterized by a high relative sensitivity, allowing the simultaneous detection of various major and minor GM3 species directly from individual HPTLC analyte bands. The lateral resolution of the direct HPTLC-MALDI-MS analysis is defined by the laser focus diameter of currently approximately 200 microm. This allows one to determine mobility profiles of individual species with a higher resolution than by reading off the chromatogram by optical absorption. The fluorescent dye primuline was, furthermore, successfully tested as a nondestructive, MALDI-compatible staining agent.  相似文献   

3.
Yorozu M  Yanagida T  Nakajyo T  Okada Y  Endo A 《Applied optics》2001,40(12):2043-2046
We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.  相似文献   

4.
Atmospheric nitrate radicals (NO3) are detected using off-axis cavity ringdown spectroscopy (CRDS) for the first time to our knowledge with a room-temperature continuous-wave (cw) diode laser operating near 662 nm. A prototype instrument was constructed that achieved a 1sigma absorption sensitivity of 5 x 10(-10) cm(-1) Hz(-1/2), corresponding to a 1.4 part per trillion by volume 2sigma detection limit in 4.6 s at 80 degrees C. This sensitivity is a significant improvement over a recent implementation of off-axis cavity-enhanced absorption spectroscopy and comparable to that of the most advanced cw CRDS and pulsed CRDS applications for atmospheric detection of NO3. A comparison of measurements of ambient air in Fairbanks, Alaska, recorded with the off-axis CRDS instrument and a previously characterized conventional cw CRDS instrument showed good agreement (R2 = 0.97).  相似文献   

5.
Kanaya Y  Akimoto H 《Applied optics》2006,45(6):1254-1259
By employing a commercially available high-voltage switch in a time-gating circuit to drive a channel photomultiplier (CPM), the afterpulse rates are significantly reduced in the time window to collect fluorescence >200 ns after the pulsed laser excitation. The CPM, kept deactivated under normal conditions (normally off), is turned on immediately after the passage of the laser pulse by shifting the voltage applied to the photocathode by 150 V to collect the fluorescence. When the detection system is used as part of a laser-induced fluorescence instrument to measure atmospheric OH radicals with the photon-counting method, the background signal is reduced by more than a factor of 10 as compared with our previous case where a conventional dynode-gated photomultiplier tube (PMT) is used, while the sensitivity toward the fluorescence is almost unchanged. A detection limit as low as 2 x 10(5) radicals cm-3 or 0.008 parts per trillion by volume is achieved for OH, with an integration time of 1 min and a signal-to-noise ratio of 2, enabling sensitive detection of the important radical in the atmosphere. This system is a superior choice with higher sensitivity and cost effectiveness as compared with the gated PMITs utilizing a microchannel plate as an electron multiplier, and could also be used effectively in light detection and ranging (lidar) instruments, where a delayed scattering signal would be efficiently discriminated from afterpulses.  相似文献   

6.
An ultrasensitive and nonlabeled detection method of nonfluorescent molecules on a microchip was developed by realizing a thermal lens microscope (TLM) with a 266-nm UV pulsed laser as an excitation light source (UV-TLM). Pulsed laser sources have advantages over continuous-wave laser sources in more compact size and better wavelength tuning, which are important for microchip-based analytical systems. Their disadvantage is difficulty in applying a lock-in amplifier due to the high (>10(4)) duty ratio of pulse oscillation. To overcome this problem, we realized a quasi-continuous-wave excitation by modulating the pulse trains at approximately 1 kHz and detecting the synchronous signal with a lock-in amplifier. The optimum pulse repetition frequency was obtained at 80 kHz, which was reasonable considering thermal equilibrium time. Furthermore, a permissible flow velocity in the range of 6.6-19.8 mm/s was found to avoid sensitivity decrease due to photochemical reactions and thermal energy dissipation. Under these conditions, we detected adenine aqueous solutions on a fused-silica microchip without labeling and obtained a sensitivity that was 350 times higher than that in a spectrophotometric method. The sensitivity was enough for detection on a microchip with an optical path length that was 2-3 orders shorter than that in conventional cuvettes. Finally, the UV-TLM method was applied to liquid chromatography detection. Fluorene and pyrene were separated in a microcolumn and detected in a capillary (50-microm inner diameter) with 150 times higher sensitivity than a spectrophotometric method. Our method provides highly sensitive and widely applicable detections for various analytical procedures and chemical syntheses on microchips.  相似文献   

7.
A spectroscopic gas sensor for nitric oxide (NO) detection based on a cavity ringdown technique was designed and evaluated. A cw quantum-cascade distributed-feedback laser operating at 5.2 mum was used as a tunable single-frequency light source. Both laser-frequency tuning and abrupt interruptions of the laser radiation were performed through manipulation of the laser current. A single ringdown event sensitivity to absorption of 2.2 x 10(-8) cm(-1) was achieved. Measurements of parts per billion (ppb) NO concentrations in N(2) with a 0.7-ppb standard error for a data collection time of 8 s have been performed. Future improvements are discussed that would allow quantification of NO in human breath.  相似文献   

8.
We show a new ultrasensitive laser-based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of (14)C-labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of (14)C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10(-15) (14)C/(12)C ratios are obtained. Using a 15-W (14)CO2 laser, a linear calibration with samples from 10(-15) to >1.5 x 10(-12) in (14)C/(12)C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized subtherapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities.  相似文献   

9.
Gondal MA  Yamani ZH 《Applied optics》2007,46(29):7083-7090
An ozone (O(3)) gas sensor with a sensitivity of parts per 10(9) (ppb) level and a high level of selectivity based on the resonant photoacoustic effect was developed using an electronically modulated cw CO(2) laser beam. Quite different from the standard chopper modulation of a laser beam, here the laser source was electronically modulated to overcome the inherent problem of frequency instability associated with chopper modulation. With electronic modulation, in conjunction with the fast Fourier transform (FFT) of transient signals, we were able to improve significantly the sensitivity of the photoacoustic (PA) system for the detection of O(3). In addition to the improved sensitivity, our method proved that the FFT of a laser modulated PA signal could suppress the noise signal generated by spurious window diffused absorption, which in the case of most commonly used lock-in techniques is rather unavoidable. The dependence of the PA signal on various experimental parameters such as buffer gas, laser power, modulation frequency, and trace gas concentration was investigated. In the case of buffer gas, argon proved to be more suitable than nitrogen and helium in terms of enhancing the sensitivity of the system. The limits of detection of O(3) using the 9 P(14) CO(2) laser line in our PA system are 5 parts per 10(9) by volume (ppbv) and 14 ppbv with electronic and standard chopper modulation, respectively. This detection limit of O(3) is quite applicable for detection of safe levels of O(3), at ground level.  相似文献   

10.
Trace concentrations of energetic materials such as 2, 4, 6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1, 3, 5-trinitro-s-triazine (RDX) are detected by laser photofragmentation-fragment detection (PF-FD) spectrometry. In this technique, a single laser operating near 227 nm photofragments the parent molecule and facilitates the detection of the characteristic NO fragment by means of its A (2)Sigma(+)-X (2)Sigma (0, 0) transitions near 227 nm. Fragment detection is accomplished by resonance-enhanced multiphoton ionization with miniature electrodes and by laser-induced fluorescence (LIF) with a photodetector. Experiments are also conducted in the visible region by use of 453.85-nm radiation for photofragmentation and fragment detection. Sand samples contaminated with PETN and RDX are analyzed by a pyrolysis-LIF technique, which involves pyrolysis of the energetic material with subsequent detection of the pyrolysis products NO and NO(2) by LIF and PF-LIF, respectively, near 227 nm. The application of these techniques to the trace analysis of TNT, PETN, and RDX at ambient pressure in room air is demonstrated with limits of detection (signal-to-noise ratio, 3) in the low parts-in-10(9) to parts-in-10(6) range for a 20-s integration time and 10-120 microJ of laser energy at 226.8 nm and approximately 5 mJ at 453.85 nm. An increase in detection sensitivity is projected with an increase in laser energy and an improved system design. The analytical merits of these techniques are discussed and compared with those of other laser-based techniques.  相似文献   

11.
A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative T06 as they passed through the approximately 2 micrometer diameter focused laser beam. Amplified photoelectron pulses from the photomultiplier are grouped into bins of 360-450 micros in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. Statistical analyses showed that (i) the number of M13 molecules counted versus concentration was linear with slope = 1, (ii) the average burst duration was consistent with the expected transit time of a single molecule through the laser beam, and (iii) the number of detected molecules was consistent with single molecule detection. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The autocorrelation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of approximately 100 DNA molecules/band or better.  相似文献   

12.
Planar laser-induced fluorescence measurements were used to investigate the expansion dynamics of a femtosecond laser-induced plasma. Temporally and spatially resolved measurements were performed to monitor the atoms that were ablated from a silicon target. A dye laser (lambda = 288.16 nm) was used to excite fluorescence signals. The radiation of an off-resonant transition (Si 390.55 nm) was observed at different distances from the target surface. This allowed easy detection of the ablated Si atoms without problems caused by scattered laser light. Abel inversion was applied to obtain the radial distribution of the Si atoms. The atom distribution in the plasma shows some peculiarities, depending on the crater depth.  相似文献   

13.
Differential optical absorption spectroscopy (DOAS) of atmospheric trace gases requires the detection of optical densities below 0.1%. Photodiode arrays are used more and more as detectors for DOAS because they allow one to record larger spectral intervals simultaneously. This type of optical multichannel analyzer (OMA), however, shows sensitivity differences among the individual photodiodes (pixels), which are of the order of 1%. To correct for this a sensitivity reference spectrum is usually recorded separately from the trace-gas measurements. Because of atmospheric turbulence the illumination of the detector while an atmospheric absorption spectrum is being recorded is different from the conditions during the reference measurement. As a result the sensitivity patterns do not exactly match, and the corrected spectra still show a residual structure that is due to the sensitivity difference. This effect usually limits the detection of optical densities to approximately 3 × 10(-4). A new method for the removal of the sensitivity pattern is presented in this paper: Scanning the spectrometer by small wavelength increments after each readout of the OMA allows one to separate the OMA-fixed pattern and the wavelength-fixed structures (absorption lines). The properties of the new method and its applicability are demonstrated with simulated spectra. Finally, first atmospheric measurements with a laser long-path instrument demonstrate a detection limit of 3 × 10(-5) of a DOAS experiment.  相似文献   

14.
A wavelength modulated, distributed feedback diode laser based photoacoustic water vapor mixing ratio measuring system for atmospheric research applications is presented. Laser modulation parameters were optimized either at 180 or 500 mbar total pressure to enhance the system's sensitivity for low or high pressures (upper troposphere/lower stratosphere or biosphere exchange layer), respectively. A wavelength locking method was developed that ensured sub-picometer absolute (5 x 10(-7) relative) wavelength stability of the laser while consuming minimum additional measurement time. At the calibration of the system, correction factors for the pressure- and temperature-dependence of the photoacoustic signal were determined, which were in turn applied to the calculation of the water vapor mixing ratio from the measured signal during the test operation of the system. The introduced features resulted in reliable, sub-ppm-level water vapor detection even under abrupt gas pressure or temperature variations typical in open atmospheric applications.  相似文献   

15.
Sonnenfroh DM  Allen MG 《Applied optics》1996,35(21):4053-4058
Recent advances in room-temperature visible diode lasers and ultrasensitive detection techniques have been exploited to create a highly sensitive tunable diode laser absorption technique for in situ monitoring of NO(2) in the lower troposphere. High sensitivity to NO(2) is achieved by probing the visible absorption band of NO(2) with an AlGalnP diode laser at 640 or 670 nm combined with a balanced ratiometric electronic detection technique. We have demonstrated a sensitivity of 3.5 × 10(10) cm(-3) for neat NO(2) in a 1-m path at 640 nm and have estimated a sensitivity for ambient operation of 5 ppbv m (l0 ppbv m at 670 nm), where ppbvm is parts in 10(9) by volume per meter of absorption path length, from measured pressure-broadening coefficients.  相似文献   

16.
A plasma-based ambient desorption/ionization mass spectrometry (ADI-MS) source was used to perform molecular mass spectral imaging. A small amount of sample material was ablated by focusing 266 nm laser light onto a spot. The resulting aerosol was transferred by a nitrogen stream to the flowing afterglow of a helium atmospheric pressure glow discharge ionization source; the ionized sample material was analyzed by a Leco Unique time-of-flight mass spectrometer. Two-dimensional mass spectral images were generated by scanning the laser beam across a sample surface. The total analysis time for a 6 mm (2) surface, which is limited by the washout of the ablation chamber, was less than 30 min. With this technique, a spatial resolution of approximately 20 microm has been achieved. Additionally, the laser ablation configuration was used to obtain depth information of over 2 mm with a resolution of approximately 40 microm. The combination of laser ablation with the flowing atmospheric pressure afterglow source was used to analyze several sample surfaces for a wide variety of analytes and with high sensitivity (LOD of 5 fmol for caffeine).  相似文献   

17.
Liquid-assisted laser ablation technique has become an alternative method to reduce the thermal damage of work material induced by a laser. In this study, water and ethanol were employed as the liquid to aid the laser grooving of polymethyl methacrylate (PMMA) sheet. The whole workpiece was submerged in the liquid and ablated under the different laser powers. A clean and deep groove can be fabricated when the PMMA was machined in the ethanol, while the ablation in water can introduce the smallest heat-affected zone compared to the air and ethanol environments. To realize the laser grooving performance, the ablation models were also developed for the first time in this study.  相似文献   

18.
We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Pre?ovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic ratio measurements in solid materials.  相似文献   

19.
In earlier studies, it was demonstrated that the sensitivity of absorbance detection in liquid chromatography (LC) can be improved significantly by using cavity ring-down spectroscopy (CRDS). Thus far, CRDS experiments have been performed using visible laser light at fixed standard wavelengths, such as 532 nm. However, since by far most compounds of analytical interest absorb in the ultraviolet (UV), it is of utmost importance to develop UV-CRDS. In this study, as a first step towards the deep-UV region, LC separations with CRDS detection (using a previously described liquid-only cavity flow cell) at 457 and 355 nm are reported for standard mixtures of dyes and nitro-polyaromatic hydrocarbons (nitro-PAHs), respectively. For the measurements in the blue range a home-built optical parametric oscillator (OPO) system, tunable between 425 and 478 nm, was used, achieving a baseline noise of 2.7 x 10(-6) A.U. at 457 nm, improving upon the sensitivity of conventional absorbance detection (typically around 10(-4) A.U.). An enhancement of the sensitivity can be seen at 355 nm as well, but the improvement of the baseline noise (1.3 x 10(-5) A.U.) is much less pronounced. The sensitivity at 355 nm is limited by the quality of the UV-CRDS mirrors that are currently available: whereas the ring-down times as obtained at 457 nm are around 70-80 ns for the eluent, they are only 20-25 ns at 355 nm. Critical laser characteristics for LC-CRDS measurements, such as pulse length and mode structure, are given and prospects for going to shorter wavelengths are discussed.  相似文献   

20.
Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is a powerful method for elemental fingerprinting of solid samples in a quasi-nondestructive manner. In order to extend the field of application to objects outside the laboratory, a portable laser ablation sampling device was assembled using a diode pumped solid state laser and fiber-optics. The ablated materials were sampled on membrane filters and subsequently quantified by means of LA-ICPMS. The analytical performance of this approach was investigated for glass and gold reference materials. Accuracies of better than 20% were reached for most elements and typical limits of detection were found to be in the range of 0.01-1 μg/g. In summary, this approach combines spatially resolved sampling with the detection power of ICPMS and enables elemental fingerprinting of objects which cannot be transferred to the laboratory, e.g., archeological artifacts in museums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号