首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Automatica》1986,22(4):477-482
An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property under conditioning. By updating a finite and fixed number of parameters, the conditional probability density, which is an exponential Fourier density, is recursively determined. Simulation results indicate that the scheme is more accurate and robust than extended Kalman filtering. It is believed that this approach is applicable to many other attitude measuring units. As no linearization and approximation are necessary in the approach, it is ideal for systems involving high levels of randomness and/or low levels of observability and systems for which accuracy is of overriding importance.  相似文献   

2.
CCD星体跟踪器作为舰船位置测量仪器,因其定位精度高、无位置积累误差、快速和智能化工作而受到重视。本文根据CCD星体跟踪器确定舰船位置的原理,介绍了一种用改进遗传算法来进行位置估算的新方法,仿真结果表明效果良好。  相似文献   

3.
王进  张辉  林玲  田宏 《计算机仿真》2012,(8):68-71,368
风云三号气象卫星上携带的一台星敏感器解算出的卫星对地姿态呈现出非正常的幅值约为0.15°的正弦周期性偏差。为解决上述问题,分析了影响卫星对地姿态的误差因素,对星敏感器本身的主点偏差、焦距误差、光轴不垂直、CCD面旋转、星表位置误差等对卫星对地姿态误差的影响规律进行了仿真和分析。结果表明:对于CCD为512×512、象元大小为17μm、视场为16°×16°、安装方位角、高角分别为107°、29°的星敏感器而言,主点偏差5像素,会对卫星对地姿态带来最大约为0.17°的固定系统偏差;焦距误差0.1mm、光轴不垂直0.1°、CCD面旋转0.1°等对卫星对地姿态的影响较小,误差不超过30";星表中恒星位置在不加岁差、章动修正的情况下,会造成卫星对地三轴姿态误差呈正弦周期性变化,且周期与卫星轨道周期一致。风云三号气象卫星的对地姿态周期性偏差现象是由于星敏感器的星表恒星位置未进行岁差、章动等修正引起的。  相似文献   

4.
In this paper, we introduce a novel method for the high‐accuracy absolute position determination for planetary rovers using the star sensor and inclinometer. We describe the star sensor and inclinometer model and the alignment method for the two sensors. We deduce the compensation algorithm for the atmosphere refraction correction error in detail and provide the rover's position solution, which effectively eliminates the tilt correction error. The experimental site and hardware configuration are introduced, and the experimental steps for the one‐time positioning are described. Three field tests on Earth indicate that the accuracy of the one‐time positioning is higher than 40 m (1σ) using 8 star images and relative inclinometer measurements. Multiple positionings in one night can improve the accuracy to approximately 15 m.  相似文献   

5.
Vision-based Target Geo-location using a Fixed-wing Miniature Air Vehicle   总被引:1,自引:0,他引:1  
This paper presents a method for determining the GPS location of a ground-based object when imaged from a fixed-wing miniature air vehicle (MAV). Using the pixel location of the target in an image, measurements of MAV position and attitude, and camera pose angles, the target is localized in world coordinates. The main contribution of this paper is to present four techniques for reducing the localization error. In particular, we discuss RLS filtering, bias estimation, flight path selection, and wind estimation. The localization method has been implemented and flight tested on BYU’s MAV testbed and experimental results are presented demonstrating the localization of a target to within 3 m of its known GPS location.  相似文献   

6.
A new autonomous celestial navigation method for the lunar rover   总被引:1,自引:0,他引:1  
A secure and autonomous navigation system is needed for the lunar rover in future lunar missions in case of emergencies. Celestial navigation is a very attractive solution for long distance navigation on the Moon without the need of ground navigation aids. It only uses star altitudes, which are measured by a high accuracy star sensor and inertial measurement unit (IMU) to estimate the position of the rover. The navigational accuracy of this method depends largely on the accuracy of measurements, so the measurement errors have a great impact on the navigational performance. A new autonomous celestial navigation method for the lunar rover is presented in this paper, which uses the augmented state unscented particle filter (ASUPF) to deal with the systematic error and random error in the measurements. The validity and feasibility of this new method is tested and examined by the hardware-in-loop test. A position estimation error within 60 m is obtained. Compared to the conventional method, this method shows better navigation performance and higher adaptability to these measurement errors.  相似文献   

7.
近年来从视频中恢复三维人体运动的研究发展很快,其中大部分方法是基于前景轮廓的。提出了一种基于纹理信息的三维人体运动恢复方法,并给出了一个鲁棒、自适应的跟踪器模型。该模型基于L1跟踪器,并将其扩展到多个视图中,使用分层搜索来跟踪人体的各个部位。它可以寻找在模板子空间里重构误差最小的跟踪目标,将每个视图的重构误差作为衡量人体三维姿态与图像拟合的可能性函数。整个算法在退火粒子滤波的框架下进行。为了提高跟踪准度,在纹理模板更新过程中使用了两种方法:用人体的三维模型来检测自遮挡;根据模板系数检测计算错误的跟踪结果。综合这两种检测器,可以防止遮挡后和计算错误的跟踪结果加入到纹理模板中。在HumanEva-Ⅱ测试集上的实验表明,该算法能够得到较好的结果。  相似文献   

8.
非接触式齿轮倒角测量系统物体坐标系与运动平台坐标系的系统定位是通过人工控制XY移动平台携带激光传感器运动使激光点投射到棋盘格左下角点,该方法存在一定的人为误差,增加了齿轮倒角测量的系统误差[1].提出用激光位移传感器扫描测量标定板右侧和下侧边缘突变点位置坐标来确定标定板右下角点位置坐标信息,棋盘格有效区域左下角点与标定板右下角点间的距离已知,控制XY二维运动平台运动,使激光点投射到棋盘格有效区域左下角点的位置,完成系统定位.  相似文献   

9.
Yau YJ  Chao CJ  Feng WY  Hwang SL 《Ergonomics》2011,54(8):745-754
The trackball has been widely employed as a control/command input device on moving vehicles, but few studies have explored the effects of platform motion on its manipulation. Fewer still have considered this issue in designing the user interface and the arrangement of console location and orientation simultaneously. This work describes an experiment carried out to investigate the performance of trackball users on a simple point-and-click task in a motion simulator. By varying the orientation of onscreen targets, the effect of cursor movement direction on performance is investigated. The results indicate that the platform motion and target orientation both significantly affect the time required to point and click, but not the accuracy of target selection. The movement times were considerably longer under rolling and pitching motions and for targets located along the diagonal axes of the interface. Subjective evaluations carried out by the participants agree with these objective results. These findings could be used to optimise console and graphical menu design for use on maritime vessels. STATEMENT OF RELEVANCE: In military situations, matters of life or death may be decided in milliseconds. Any delay or error in classification and identification will thus affect the safety of the ship and its crew. This study demonstrates that performance of manipulating a trackball is affected by the platform motion and target orientation. The results of the present study can guide the arrangement of consoles and the design of trackball-based graphical user interfaces on maritime vessels.  相似文献   

10.
Multiple experimental three-degrees-of-freedom (three-DOF) helicopters that are equipped with active disturbance systems constitute an attractive platform to validate robust control strategies. In this paper, a distributed synchronization controller is developed for such a platform, where each helicopter is subjected to unknown model uncertainties and external disturbances, and the desired trajectories are generated online, communicated through a network and not accessible by all helicopters. The controller is composed of a continuous tracker and a continuous uncertainty and disturbance estimator (UDE). The tracker makes the nominal closed-loop system globally asymptotically stable, and the UDE output is used to reject total uncertainties. The conditions that ensure zero-error tracking for each helicopter are identified; for the case with nonzero error, explicit relationship inequalities between the involved design parameters and the ultimate bound of error are revealed. Experimental results of four cases demonstrate improved tracking and synchronization accuracy of using the UDE with small parameters.  相似文献   

11.
《Ergonomics》2012,55(8):745-754
The trackball has been widely employed as a control/command input device on moving vehicles, but few studies have explored the effects of platform motion on its manipulation. Fewer still have considered this issue in designing the user interface and the arrangement of console location and orientation simultaneously. This work describes an experiment carried out to investigate the performance of trackball users on a simple point-and-click task in a motion simulator. By varying the orientation of onscreen targets, the effect of cursor movement direction on performance is investigated. The results indicate that the platform motion and target orientation both significantly affect the time required to point and click, but not the accuracy of target selection. The movement times were considerably longer under rolling and pitching motions and for targets located along the diagonal axes of the interface. Subjective evaluations carried out by the participants agree with these objective results. These findings could be used to optimise console and graphical menu design for use on maritime vessels.

Statement of Relevance: In military situations, matters of life or death may be decided in milliseconds. Any delay or error in classification and identification will thus affect the safety of the ship and its crew. This study demonstrates that performance of manipulating a trackball is affected by the platform motion and target orientation. The results of the present study can guide the arrangement of consoles and the design of trackball-based graphical user interfaces on maritime vessels.  相似文献   

12.
The laser tracker has been used as the mainstream instrument for the position accuracy calibration of industrial robots for quite a long time. However, due to the complexity of the built-in dual-axis active servo tracking system, its cost is high and the target reflector has to adjust its pose frequently, so it cannot be popularized in the production and application sites of industrial robots. Based on this drawback, a 3D passive laser tracker (3DPLT) with high precision, simple structure, easy operation and low cost is proposed in this paper. Firstly, the overall structure of the system is designed, and its position error model based on the principle of spherical coordinate measurement and vector transfer method is established. Then, the error parameters are identified by experiments to formulate the error compensation model. Finally, the multi-pose and large-range spatial error compensation verification experiments of the system are carried out on a commercial coordinate measuring machine. The results show that the spatial volumetric errors of the 3DPLT can achieve within 40 μm after compensation with a good repeatability of ±4 μm. A comparison contouring test with a commercial ballbar is also carried out to validate its applicability of robot calibration.  相似文献   

13.
Mobile robot machining provides more flexible machining mode compared to the robot machining with a fixed base. However, its machining accuracy is frequently questioned. This paper focuses on the accuracy analysis in mobile robot machining. To evaluate the machining error qualitatively, the tool center point (TCP) error index is defined as the distance between the TCP and the designed machining point. The different error sources acting on the TCP error index are enumerated, and the theoretical accuracy analysis is proposed to eliminate the TCP error. The mobile robot machining strategy is then proposed based on the accuracy analysis. To ensure high machining accuracy, the global measurement system locates the position of the workpiece and the mobile platform. The force-controlled grinding head is used to compensate the TCP error. Experimental results show that the TCP error during mobile robot machining is lower than 40 mm, which mainly introduced by the calibration of the workpiece. The force-controlled grinding head can compensate the TCP error and the fluctuation of the grinding force under the control is lower than ±2 N.  相似文献   

14.
This paper presents the design and performance evaluation of a novel integrated attitude filter with application to space navigation. The design is based directly on the sensor measurements as opposed to traditional solutions that resort to rotation parameterizations. The information provided by a low-cost star tracker is merged with the measurements of a triaxial rate gyro to provide accurate estimates of the attitude. The proposed multirate solution also includes the estimation of rate gyro bias and tuning procedures. Simulation and experimental results, including ground truth data for performance evaluation purposes, are shown that illustrate the attainable performance in the presence of realistic measurements provided by low-cost star trackers.  相似文献   

15.
This paper proposes a relative attitude and distance estimation algorithm based on pairwise range measurements between vehicles as well as inertial measurement of each platform. The solution of Wahba''s Problem is introduced to compute the relative attitude between multi-platforms with the sampled pairwise ranges, in which the relative distance estimation is derived and the estimation error distributions are analyzed. An extended Kalman filter is designed to fuse the estimated attitude and distance with the inertial measurement of each platform. The relative poses between platforms are determined without any external aided measurement. To show this novelty, a real testbed is constructed by our research lab. And the experiment results are positive.  相似文献   

16.
星敏感器系统在长达两年以上连续不间断使用过程中出现故障是难免的。因此一旦发生故障,如何迅速确定故障原因和故障部位,就显得十分关键。重点研究了星敏感器在轨运行期间的可能出现的故障种类、各种故障现象以及导致故障出现的原因,探讨了针对各种故障的诊断方法。  相似文献   

17.
利用微动平台,二次开发控制软件,进行精密控制。为了克服回程误差,选择精度更高的光栅尺进行测量,整个测量系统组成伺服反馈系统,测量软件上进行闭环,一键设定到位,精度能达到0.2μm,适合于各种单自由度或多自由度小载荷精密移动领域。  相似文献   

18.
双目立体视觉三维重建实验平台研究   总被引:1,自引:0,他引:1       下载免费PDF全文
三维重建是计算机视觉和虚拟现实领域的一个重要研究内容,其中,欧式重建以其直观能够反应物体原貌的特点在反求工程中得到了广泛的应用。为反求工程的需要开发了一套基于双目立体视觉的三维重建软件,综合考虑了欧式三维重建误差产生多种因素,给出了一整套比较完备的欧式三维重建流程,基于真实图像的实验结果表明,该实验平台可以获得较高的重建精度和良好的重建效果。  相似文献   

19.
位姿估计一直是三维重建领域的关键性问题.为保证移动端有限计算资源下的实时性并提高轨迹计算的准确性,提出一种紧耦合的移动端实时位姿优化方法.首先,获取图像信息与运动传感器信息进行特征提取、预积分等预处理;然后根据对极几何约束,计算重投影误差与惯性传感器误差;最后采用加权误差联合优化计算位姿轨迹.紧耦合策略可以有效利用图像...  相似文献   

20.
The shuttle infrared telescope facility (SIRTF) is mounted in the orbiter on the instrument pointing system (IPS) and requires that the image at the focal plane be stabilized to better than 0.25 arcsec in order to achieve the scientific goals of the device. Current estimates of IPS performance accuracy indicate that additional stabilization will be necessary to meet the SIRTF requirements. An image motion compensation system, utilizing a charge coupled device (CCD) star tracker located at the focal plane and a steerable mirror in the SIRTF optical path, has been designed to work in conjunction with the IPS. The CCD tracks multiple stars simultaneously and through the use of a high-performance microcomputer generates three-axis attitude errors and gyro drift estimates to correct disturbances not compensated for the IPS control system. The SIRTF control system is described in detail and performance is analyzed with respect to system noise inputs, environmental disturbances, and error sources such as bending and feed-forward scale factor. It is concluded that the SIRTF accuracy and stability requirements can be met with this design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号