首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donovan DP  Carswell AI 《Applied optics》1997,36(36):9406-9424
The use of powerful Raman backscatter lidars enables one to measure the stratospheric aerosol extinction profile independently of the backscatter, thereby obtaining additional information to aid in retrieving the physical characteristics of the sampled aerosol. We used principal component analysis to construct a self-consistent method for the retrieval of aerosol bulk physical and optical properties from multiwavelength elastic and/or inelastic Raman backscatter lidar signals. The procedure is applied to synthetic and actual lidar signals. We found that aerosol surface area and volume can be usefully estimated and that the use of Raman-derived extinction data leads to a notable improvement in the accuracy of the estimations.  相似文献   

2.
Menzies RT  Tratt DM 《Applied optics》1994,33(24):5698-5711
An airborne CO(2) coherent lidar has been developed and flown on over 30 flights of the NASA DC-8 research aircraft to obtain aerosol and cloud backscatter and extinction data at a wavelength near 9μm. Designed to operate in either zenith- or nadir-directed modes, the lidar can be used to measure vertical profiles of backscatter throughout the vertical extent of the troposphere and the lower stratosphere. Backscatter measurements in absolute units are obtained through a hard-target calibration methodology. The use of coherent detection results in high sensitivity and narrow field of view, the latter property greatly reducing multiple-scattering effects. Aerosol backscatter profile intercomparisons with other airborne and ground-based CO(2) lidars were conducted during instrument checkout flights over the NASA Ames Research Center before extended depolyment over the Pacific Ocean. Selected results from data taken during the flights over the Pacific Ocean are presented, emphasizing intercom arisons with backscatter profile data obtained at 1.06 μm with a NASA Goddard Space Flight Center Nd:YAG lidar on the same flights.  相似文献   

3.
We present a sequential algorithm for estimating both concentration dependence on range and time and backscatter coefficient spectral dependence of optically thin localized atmospheric aerosols using data from rapidly tuned lidar. The range dependence of the aerosol is modeled as an expansion of the concentration in an orthonormal basis set whose coefficients carry the time dependence. Two estimators are run in parallel: a Kalman filter for the concentration range and time dependence and a maximum-likelihood estimator for the aerosol backscatter wavelength and time dependence. These two estimators exchange information continuously over the data-processing stream. The state model parameters of the Kalman filter are also estimated sequentially together with the concentration and backscatter. Lidar data collected prior to the aerosol release are used to estimate the ambient lidar return. The approach is illustrated on atmospheric backscatter long-wave infrared (CO2) lidar data.  相似文献   

4.
An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately. The Raman lidar algorithms were tested by use of synthetic lidar data, simulated at 355, 532, 386, and 607 nm, with realistic experimental and atmospheric conditions taken into account. The intercomparison demonstrates that the data-handling procedures used by all the lidar groups provide satisfactory results. Extinction profiles show mean deviations from the correct solution within 10% in the planetary boundary layer (PBL), and backscatter profiles, retrieved by use of algorithms based on the combined Raman elastic-backscatter lidar technique, show mean deviations from solutions within 20% up to 2 km. The intercomparison was also carried out for the lidar ratio and produced profiles that show a mean deviation from the solution within 20% in the PBL. The mean value of this parameter was also calculated within a lofted aerosol layer at higher altitudes that is representative of typical layers related to special events such as Saharan dust outbreaks, forest fires, and volcanic eruptions. Here deviations were within 15%.  相似文献   

5.
6.
7.
The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5?GHz and a finesse of 50.7 (312) at 532?nm (1064?nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.  相似文献   

8.
Russo F  Whiteman DN  Demoz B  Hoff RM 《Applied optics》2006,45(27):7073-7088
To calculate aerosol extinction from Raman lidar data, it is necessary to evaluate the derivative of a molecular Raman signal with respect to range. The typical approach taken in the lidar community is to make an a priori assumption about the functional behavior of the data to calculate the derivative. It has previously been shown that the use of the chi-squared technique to determine the most likely functional behavior of the data prior to actually calculating the derivative eliminates the need for making a priori assumptions. Here that technique is validated through numerical simulation and by application to a significant body of Raman lidar measurements. In general, we show that the chi-squared approach for evaluating extinction yields lower extinction uncertainty than traditional techniques. We also use the technique to study the feasibility of developing a general characterization of the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol extinction measurements to be estimated accurately without the need of the chi-squared technique.  相似文献   

9.
Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to 800 Mm(-1) and lidar ratios mostly between 40 and 55 sr (average of 47+/-6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area). Extinction values usually varied between 100 and 300 Mm(-1), and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of 38+/-7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.  相似文献   

10.
The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.  相似文献   

11.
12.
A solution of the single-scattering lidar equation requires a relationship between the coefficients of backscatter beta(r) and extinction sigma(r) to be of the form beta(r) = C2sigma(r)k, where C2 and k are parameters independent of range r. The sensitivity of a particular lidar inversion algorithm to uncertainties in C2 and k is investigated using a measured lidar return which indicated the atmosphere to be essentially horizontally homogeneous during a reduced visibility condition. Starting with the measured power returned as a function of range, extinction coefficients and average visibilities are calculated using the inversion algorithm for different values of C2 and k and compared with those inferred from the lidar return using the slope method. The calculated extinction coefficients (and visibilities) were found to be extremely sensitive to uncertainties in C2. This questions the usefulness of the lidar inversion algorithm for aerosol extinction applications when the air mass characteristics change along the measurement path.  相似文献   

13.
The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 microm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated.  相似文献   

14.
Imaki M  Kobayashi T 《Applied optics》2005,44(28):6023-6030
An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.  相似文献   

15.
16.
17.
Yue GK 《Applied optics》2000,39(30):5446-5455
A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.  相似文献   

18.
Tropospheric height profiles of five particle backscatter coefficients between 355 and 800 nm and particle extinction coefficients at 355 and 532 nm measured with a multiple-wavelength backscatter lidar and a dual-wavelength Raman lidar are presented. From these data microphysical particle parameters are determined by a specifically designed inversion algorithm.  相似文献   

19.
We present effective radius, volume, surface-area, and number concentrations as well as mean complex refractive index of tropospheric particle size distributions based on lidar measurements at six wavelengths. The parameters are derived by means of an inversion algorithm that has been specifically designed for the inversion of available optical data sets. The data were taken on 20 June and on 20 July 1997 during the Aerosol Characterization Experiment ACE 2 (North Atlantic/Portugal) and on 9 August 1998 during the Lindenberg Aerosol Characterization Experiment LACE 98 (Lindenberg/Germany). Measurements on 20 June 1997 were taken in a clean-marine boundary layer, and a large value of 0.64 mum for the effective radius, a low value of 1.45 for the real part, and a negligible imaginary part of the complex refractive index were found. The single-scatter albedo was 0.98 at 532 nm. It was derived from the particle parameters with Mie-scattering calculations. In contrast, the particles were less than 0.2 mum in effective radius in a continental-polluted aerosol layer on 20 July 1997. The real part of the complex refractive index was ~1.6; the imaginary part showed values near 0.03i. The single-scatter albedo was 0.84. On 9 August 1998 an elevated particle layer located from 3000 to 6000 m was observed, which had originated from an area of biomass burning in northwestern Canada. Here the effective radius was ~0.24 mum, the real part of the complex refractive index was above 1.6, the imaginary part was ~0.04i, and the single-scatter albedo was 0.81. Excellent agreement has been found with results based on sunphotometer and in situ measurements that were performed during the field campaigns.  相似文献   

20.
A method is proposed that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index on a routine basis from backscatter and extinction coefficients at multiple wavelengths. The optical data in terms of vertical profiles are derived from multiple-wavelength lidar measurements at 355, 400, 532, 710, 800, and 1064 nm for backscatter data and 355 and 532 nm for extinction data. The algorithm is based on the concept of inversion with regularization. Regularization is performed by generalized cross-validation. This method does not require knowledge of the shape of the particle size distribution and can handle measurement errors of the order of 20%. It is shown that at least two extinction data are necessary to retrieve the particle parameters to an acceptable accuracy. Simulations with monomodal and bimodal logarithmic-normal size distributions show that it is possible to derive effective radius, volume, and surface-area concentrations to an accuracy of +/-50%, the real part of the complex refractive index to +/-0.05, and the imaginary part to +/-50%. Number concentrations may have errors larger than +/-50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号