首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen YS  Hung YC  Chen K  Huang GS 《Nanotechnology》2008,19(49):495502
Since the existence of nanoparticles in our environment has already attracted considerable attention due to their possible toxic impact on biological systems, the field detection of nanoparticles is becoming a technology that will be much in need. We have constructed a piezoelectric sensor with an antibody-coated electrode. The antiserum can bind gold nanoparticles with a high degree of selectivity and sensitivity. The biosensor thus constructed can detect 4, 5, or 6?nm gold nanoparticles (GNPs) depending on the coated antiserum. The sensitivity for the detection of 5?nm GNPs was 10.3 ± 0.9?ng?Hz(-1), with the low limit of detection at 5.5?ng. A quartz crystal microbalance (QCM) sensor was capable of detecting GNPs and other types of nanoparticle, such as ZnO, or Fe(3)O(4). The current study provides, for the first time, a platform for detecting nanoparticles in a convenient, economical manner.  相似文献   

2.
Although electrospray-differential mobility analyzers (ES-DMA) have been previously employed to characterize ligand binding to nanoparticles, absolute quantification of surface coverage can be inaccurate at times because of ligand conformational effects. In this Letter, we report a quantitative technique by in-flight coupling of a particle mass analyzer (APM) with ES-DMA, thus enabling a direct quantitative analysis of mass independent of particle size, material, morphology and conformation. We demonstrate the utility of ES-DMA-APM by studying two model complex systems (gold nanoparticle-bovine serum albumin and polystyrene bead-antibody) as a function of concentration and pH. Our results obtained with ES-DMA-APM are in excellent agreement with prior work. We anticipate that this will enhance the capabilities of online quantitative characterization of ligand binding to nanoparticles.  相似文献   

3.
We studied the specific binding of an anticancer drug, dacarbazine (DTIC), to DNA bases and oligonucleotides attached to gold nanoparticles by using electrochemical methods, and the results indicate that the presence of gold nanoparticles could facilitate the binding of dacarbazine to specific DNA bases and remarkably enhance the relative detection sensitivity. The results of the study on interaction of dacarbazine with oligonucleotides also illustrate that dacarbazine could recognize some specific sequence in DNA chain and sensitively detect single-base mismatch in DNA helix.  相似文献   

4.
Green-synthesized gold nanoparticles were utilized for the detection of organophosphorous pesticides. Heparin, one of glycosaminoglycans, was used as a reducing and stabilizing agent. The reaction conditions were optimized, and high resolution-transmission electron microscopic images revealed gold nanoparticles of various shapes. Organophosphorous pesticides in water were detected by simply mixing them with gold nanoparticles. NaCl induced a color change in the mixed solution from wine-red to purple-blue that was dependent on the pesticide concentration in the range of 10-1,000 ppb. Gold nanoparticles were immobilized on a silica gel matrix in order to prepare solid supports for removing pesticides. The incorporation of atomic gold and heparin bound to 2 g of silica gel was determined 4,058 ppm and 33 microg as measured by inductively coupled plasma-atomic emission spectrophotometry and carbazole assay, respectively. AuNPs-immobilized silica gel columns were successfully applied for removing fenthion in water confirmed by RP-HPLC and FT-IR analyses.  相似文献   

5.
Nanometer-sized fluorescent particles (latex nanobeads) have been covalently linked to DNA binding proteins to probe specific sequences on stretched single DNA molecules. In comparison with single organic fluorophores, these nanoparticle probes are brighter, are more stable against photobleaching, and do not suffer from intermittent on/off light emission (blinking). Specifically, we demonstrate that the site-specific restriction enzyme EcoRI can be conjugated to 20-nm fluorescent nanoparticles and that the resulting nanoconjugates display DNA binding and cleavage activities of the native enzyme. In the absence of cofactor magnesium ions, the EcoRI conjugates bind to specific sequences on double-stranded DNA but do not initiate enzymatic cutting. For single DNA molecules that are stretched and immobilized on a solid surface, nanoparticles bound at specific sites can be directly visualized by multicolor fluorescence microscopy. Direct observation of site-specific probes on single DNA molecules opens new possibilities in optical gene mapping and in the fundamental study of DNA-protein interactions.  相似文献   

6.
Two different procedures of grafting of polyethyleneterephthalate (PET), modified by plasma treatment, with gold nanoparticles (nanospheres) are studied. In the first procedure the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with gold nanoparticles. In the second one the PET foil was grafted with gold nanoparticles previously coated by the same dithiol. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Gold nanoparticles were characterized by ultraviolet–visible spectroscopy. The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma activated PET and it mediates subsequent grafting of the gold nanoparticles.  相似文献   

7.
8.
Tan YN  Lee KH  Su X 《Analytical chemistry》2011,83(11):4251-4257
We have developed a label-free homogeneous phase bioassay to characterize the DNA binding properties of single-stranded DNA binding (SSB) protein, a key protein involved in various DNA processes such as DNA replication and repair. This assay uses gold nanoparticles (AuNPs) as sensing probe and is based on the phenomenon that preformed SSB-single-stranded DNA (ssDNA) complexes can protect AuNPs against salt-induced aggregation better than SSB or ssDNA alone. With the controlled particle aggregation/dispersion as measure, this assay can be used to detect the formation of SSB complexes with ssDNA of different length and nucleotide composition and to assess their binding properties without tedious and complicated assay procedures. On the basis of the inverse relationship between DNA hybridization efficiency and the tendency of SSB to form protection complex with unhybridized ssDNA to AuNPs, this assay is further developed to detect DNA hybridization with single nucleotide polymorphism selectivity. Owing to the high affinity between SSB and dissociated ssDNA, single-base mismatch discrimination in a long sequence of 30-mer DNA was achieved for both the end- and center-base mismatch. Unlike the conventional techniques for DNA and protein analysis, current AuNPs-based sensing strategy is simple in design, fast in detection, and economical for operation without the need of sophisticated equipment.  相似文献   

9.
Gold nanoparticles modified with anti-mouse IgG have been used to trace oligonucleotides carrying a c-myc peptide. Two strategies, a dot-blot format as well as inductively coupled plasma mass spectrometry (ICPMS) have been used to detect the nanoparticle tracer. For both cases, oligonucleotide-peptide conjugates were first applied to a nitrocellulose membrane using a manifold attached to a suction device. After immobilization of the oligonucleotide by UV radiation, the samples were incubated with an anti-c-myc monoclonal antibody. In the case of the dot-blot format strategy, it was followed by incubation with a secondary antibody conjugated to horseradish peroxidase and development with luminol as chemiluminescent substrate. In the case of ICPMS strategy, it was followed by incubation with the secondary antibody (anti-mouse IgG) conjugated to gold nanoparticles and their ICPMS detection after dissolving. The nonspecific adsorptions were found to be around zero. The limit of detection for peptide-modified DNA was 0.2 pmol. The method may have significant potential as an important ICPMS-based nonradioactive DNA detection method for the simultaneous determination of various sequences by labeling different kinds of inorganic nanoparticles.  相似文献   

10.
Kong H  Lu Y  Wang H  Wen F  Zhang S  Zhang X 《Analytical chemistry》2012,84(10):4258-4261
Fluorescent gold nanoparticle (GNP) is an easily synthesized and biocompatible optical platform for sensing and imaging with tunable near-infrared (NIR) emission. However, the relatively low fluorescence (FL) quantum yield limits the further improvement of sensitivity and application. Here, we find that, on plasmonic substrates, the FL intensity of protein-directed synthesized GNPs can be enhanced significantly (~20-fold). Moreover, protein analytes can interact with GNPs and influence the enhanced fluorescence process so that we can obtain distinct FL image patterns. Then, using the array-based sensing strategy, protein discrimination can be achieved. In our present experiment, five GNPs were used as sensing elements and 10 kinds of proteins at three concentrations (0.2, 0.5, and 1 μM) were successfully identified. This array-based sensing strategy using enhanced-fluorescence from GNPs is highly sensitive and differentiable, expanding the application field of GNPs.  相似文献   

11.
The ability to manipulate and intervene in the processes of assembly and disassembly of DNAs and nanoparticles is important for the exploitation of nanoparticles in medical diagnostics and drug delivery. This report describes the results of an investigation of a strategy to intervene in the assembly and disassembly processes of DNAs and gold nanoparticles based on two approaches. The first approach explores the viability of molecular intervention to the assembly-disassembly-reassembly process. The temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles were studied as a model system to illustrate this approach. The introduction of a molecular recognition probe leads to intervention in the assembly-disassembly process depending on its specific biorecognition. This process was detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. The second approach involves the disassembly of the DNA-linked assembly of nanoparticles using restriction enzymes (e.g., MspI). The presence of the double stranded DNAs in the nanoparticle assembly was also substantiated by a Southern blot. Implications of the results to exploration of the molecular intervention for fine-tuning interfacial reactivities in DNA-based bioassays are also discussed.  相似文献   

12.
13.
14.
Khaled A  Guo S  Li F  Guo P 《Nano letters》2005,5(9):1797-1808
By utilizing RNA nanotechnology, we engineered both therapeutic siRNA and a receptor-binding RNA aptamer into individual pRNAs of phi29's motor. The RNA building block harboring siRNA or other therapeutic molecules was fabricated subsequently into a trimer through the interaction of engineered right and left interlocking RNA loops. The incubation of the protein-free nanoscale particles containing the receptor-binding aptamer or other ligands resulted in the binding and co-entry of the trivalent therapeutic particles into cells, subsequently modulating the apoptosis of cancer cells and leukemia model lymphocytes in cell culture and animal trials. The use of such antigenicity-free 20-40 nm particles holds promise for the repeated long-term treatment of chronic diseases.  相似文献   

15.
Anisotropic growth of PbO with symmetrical hexagonal-shape nanosheet morphology was demonstrated for the first time via solution phase synthesis in the presence of Au nanoparticles at room temperature. Au NPs play a critical role in the formation of PbO nanosheets. No nanosheets were formed in absence of Au NPs. The effect of Au NPs appears to result from their ability to provide nucleation sites to seed anisotropic growth of the PbO nanocrystals and later the nanocrystals aggregated to form nanosheet structure. The method demonstrated here provides a facile room temperature colloidal method of producing high-quality and yield of high-symmetrical hexagonal-shape PbO nanosheets with controlled edge length.  相似文献   

16.
Interfacial interactions between immobilized DNA probes and DNA-specific sequence binding drugs were investigated using impedance spectroscopy toward the development of a novel biosensing scheme. The impedance measurements are based on the charge-transfer kinetics of the [Fe(CN)6]3-/4- redox couple. Compared to bare gold surfaces, the immobilization of DNA and then the DNA-drug interaction on electrode surfaces altered the capacitance and the interfacial electron resistance and thus diminished the charge-transfer kinetics by reducing the active area of the electrode or by preventing the redox species from approaching the electrode. Electrochemical deposition of gold nanoparticles on a gold electrode surface showed significant improvement in sensitivity. DNA-capped gold nanoparticles on electrodes act as selective sensing interfaces with tunable sensitivity due to higher amounts of DNA probes and the concentric orientation of the DNA self-assembled monolayer. The specificity of the interactions of two classical minor groove binders, mythramycin, a G-C specific-DNA binding anticancer drug, netropsin, an A-T specific-DNA binding drug and an intercalator, nogalamycin on AT-rich DNA-modified substrate and GC-rich DNA-modified substrate are compared. Using gold nanoparticle-deposited substrates, impedance spectroscopy resulted in a 20-40-fold increase in the detection limit. Arrays of deposited gold nanoparticles on gold electrodes offered a convenient tool to subtly control probe immobilization to ensure suitably adsorbed DNA orientation and accessibility of other binding molecules.  相似文献   

17.
The ellipsometric measurement of local surface plasmon resonance (LSPR) caused by the adsorption of chitosan on layer-by-layer gold nanoparticles (Au NPs) was investigated. Six nanometer (6 nm) Au NPs were prepared and layer-by-layer Au NPs were fabricated to shift the LSPR to 520, 540, and 560 nm, respectively, due to the Mie theory. The thicknesses and the fractions of the layer-by-layer Au NPs were measured accurately using a combination of the Fresnel equation and the Maxwell-Garnett equations for ellipsometry. Furthermore, the position of the LSPR was shifted by chitosan. Using trajectory to record the trace of polarized light for ellipsometry resulting from LSPR, it was found that LSPR is predominantly induced when the LSPR position is close to the wavelength of the ellipsometric measurement. The trajectory circle of LSPR is very large for an increase of chitosan adsorption on Au NPs when the LSPR position is close to the detected wavelength. The linear approximation aspect quantifying the trajectory corresponds with the change of LSPR for the adsorption of chitosan, except for cases with low incidence and Brewster angles. The aspects and technologies of ellipsometry will benefit from the findings in this study, with potential applications in the fields of determination of molecular adsorption.  相似文献   

18.
Abstract

We present a detection scheme for nanoscale particles based on the gradient force and torque near a tightly focused laser beam. The focus affects the path of nanoparticles passing by and a quadrant detector records the particle trajectory. A feedback system continuously adjusts the laser power and thereby prevents the particles from being trapped. Particle size and shape can be assessed by evaluating the time-trace of the quadrant detector signal.  相似文献   

19.
In this work, gold nanoparticles (AuNPs) were prepared by the microwave irradiation method and comparative studies on the removal of dye by adsorption on activated carbon (AC) and polyvinylpyrrolidone (PVP)-supported AuNPs-coated AC were made. The uniform and stable AuNPs were prepared by the reduction of gold chloride (HAuCl4) using glucose as reducing agent and PVP as a stabilising and capping agent. The resulting AuNPs were characterised by transmission electron microscopy (TEM) and UV-Vis spectroscopy. The TEM technique showed the presence of AuNPs with an average size of 20?nm. The effect of various process parameters has been investigated by following the column adsorption technique at room temperature. Percentage removal of dye increased with the decrease in initial concentration and increased with the increase in contact time. Adsorption data were modelled with the Freundlich isotherms. The Freundlich isotherm model has been applied to the equilibrium adsorption data. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. The adsorption capacity of the water-desorbed adsorbate reduced from 97% to 60% for n?=?6 cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号