首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zirconium diboride (ZrB2) was densified by pressureless sintering using <4-wt% boron carbide and/or carbon as sintering aids. As-received ZrB2 with an average particle size of ∼2 μm could be sintered to ∼100% density at 1900°C using a combination of boron carbide and carbon to react with and remove the surface oxide impurities. Even though particle size reduction increased the oxygen content of the powders from ∼0.9 wt% for the as-received powder to ∼2.0 wt%, the reduction in particle size enhanced the sinterability of the powder. Attrition-milled ZrB2 with an average particle size of <0.5 μm was sintered to nearly full density at 1850°C using either boron carbide or a combination of boride carbide and carbon. Regardless of the starting particle size, densification of ZrB2 was not possible without the removal of oxygen-based impurities on the particle surfaces by a chemical reaction.  相似文献   

2.
Strong and permeable macro-porous α-Al2O3 membrane supports are made by colloidal filtration of 20 vol% dispersions of α-Al2O3 with an average particle size of 600 nm. Intact compacts with very good surface quality were obtained at an optimum pH of 9.5 and dosage of 0.2 wt% ammonium aurintricarboxylate (Aluminon), based on dry alumina. The colloidal stability of the aluminon-stabilized slurries is confirmed by ξ potential measurements. Slight sintering of dense-packed α-Al2O3 compacts was found to result in >67% packing density and a bimodal pore-size distribution as derived from shrinkage behavior and gas adsorption studies. Non-stationary single gas permeation measurements showed improved gas permeability, compared with α-Al2O3 compacts prepared using powder with a smaller particle size (300 nm). The strength of the disk-shaped alumina compacts within the porosity range of 30%–20% increased from 100 to 300 MPa with a standard deviation of 20 and 50 MPa, respectively.  相似文献   

3.
Zinc aluminate (ZnAl2O4) particles have been synthesized by the hydrothermal method using NH3·H2O as a pH adjustment mineralizer. Experimental results showed that ZnAl2O4 particle size was dependent on the precursor pH, and could be controlled through pH adjustment. It was 5.5, 11.5, and 27 nm when the precursor pH was 8.2, 9.3, and 10.5, respectively. On the other hand, the particle size distribution changed broader with increase in pH. These differences were attributable to the different NH3·H2O function. NH3·H2O was mainly used as a base at lower pH (<9.0), while its complex function predominated at higher one (>9.5). From thermodynamic viewpoint, the rate-limiting steps were dissolution of Al(OH)3 and γ-AlO(OH) to Al(OH)4 at lower and higher pH, respectively. The newly formed γ-AlO(OH) with high reactivity was the critical factor in the synthesis of bimodal particles. Higher temperature treatment of γ-AlO(OH) could decrease the reactivity, and could be used as an aluminum source for synthesis uniform ZnAl2O4 particles.  相似文献   

4.
A slurry method was used to determine the dielectric permittivity (ɛr) of BaTiO3 powders with different characteristics, such as tetragonality ( c / a ratio), density, particle size, and specific surface area. The ɛr of powders highly depended on their characteristics. In order to extract the effect of each characteristic, a statistical analysis was carried out to represent the ɛr of powders with an empirical formula. A fairly good agreement was obtained between observed data and those estimated from the formula. The ɛr decreased with particle size because of the size effect of BaTiO3 and high tetragonality and density was essential to obtain high ɛr of powders.  相似文献   

5.
Pulsed Electric Current Sintering of Silicon Nitride   总被引:1,自引:0,他引:1  
Pulsed electric current sintering (PECS) has been used to densify α-Si3N4 powder doped with oxide additives of Y2O3 and Al2O3. A full density (>99%) was achieved with virtually no transformation to β-phase, resulting in a microstructure with fine equiaxed grains. With further holding at the sintering temperature, the α-to-β phase transformation took place, concurrent with an exaggerated grain growth of a limited number of elongated β-grains in a fine-grained matrix, leading to a distinct bimodal grain size distribution. The average grain size was found to obey a cubic growth law, indicating that the growth is diffusion-controlled. In contrast, the densification by hot pressing was accompanied by a significant degree of the phase transformation, and the subsequent grain growth gave a broad normal size distribution. The apparent activation energy for the phase transformation was as high as 1000 kJ/mol for PECS, almost twice the value for hot pressing (∼500 kJ/mol), thereby causing the retention of α-phase during the densification by PECS.  相似文献   

6.
The room-temperature tetragonal-to-cubic transformation in BaTiO3 powders with decreasing particle size has been carefully studied, using materials prepared mainly by hydrothermal methods. Hydrothermal BaTiO3 powders exhibited a more uniform particle size distribution than oxalate-route powders, with X-ray diffraction and electron microscopy indicating that powders 0.19 μm in size were fully cubic while powders 0.27 μ were completely tetragonal (within a 5% detection limit for cubic material) at room temperature. The tetragonal-to-cubic transformation temperature was also found to lie in the range of 121°± 3°C for BaTiO3 powders with room-temperature ( c/a ) values > 1.008. No transformation could be detected using differential scanning calorimetry for BaTiO3 particles with a ( c/a ) > 1.008 at room temperature. BaTiO3 powder with a particle size just too small (0.19 μm) to be tetragonal at room temperature remained cubic down to 80 K. Different models for the cubic-to-tetragonal room-temperature transformation are discussed. Hydroxyl ions do not appear to greatly affect the cubic-to-tetragonal transformation, which appears to be essentially dependent on particle size. It is concluded that a model based on surface free energy, as previously discussed for the monoclinic-to-tetragonal transformation at room temperature of fine ZrO2 particles, is consistent with the experimental data.  相似文献   

7.
This paper examines the effects of particle concentration and size on the yield stress of ZrO2 suspensions at a well-defined surface chemistry condition of the isoelectric point (IEP). At the IEP, the relationship between yield stress τYmax and particulate volume fraction φs and mean particle size d was evaluated to be τYmax = K φs4.0/ d 2.0. The difference in size distribution of the various ZrO2 suspensions examined causes some degree of scatter in the data used to establish the τYmax, φs, and d relation. The use of particle concentration nt based on the fine size fraction instead of volume fraction φs provided a better correlation, because the fine particles govern the properties of the flocculated network structure.  相似文献   

8.
(La0.8Sr0.2)0.9MnO3–YSZ composite particles were synthesized by spray pyrolysis. The mean particle size of the synthesized powders was about 1 pm and the particle size distribution was very narrow. The synthesized powders were composed of the perovskite (La,Sr)MnO3 and cubic phase YSZ. Each particle synthesized consisted of uniform and well-dispersed line primary particles of (La,Sr)MnO3 and YSZ (0.1 μm particle size).  相似文献   

9.
Y-Ba-Cu-O powder, having desirable composition, particle size, compaction, and sintering properties, has been prepared by a novel combustion process involving metal nitrate-urea decomposition. Single-phase Y-Ba-Cu-O is obtained by reacting the mixture of yttrium, barium, and copper nitrates in 123 stoichiometry with urea at 900°C for a period of 1 h. Following grinding in acetone the powder possessed an average particle size of 1 μm, a surface area of 42.2 m2/g, a bulk density of 2.7 g/cm3, and could be sintered to 92% theoretical density at 930°C with the resulting material having a T c of 90 K.  相似文献   

10.
Six alumina casting slips with particle-size distributions varying from 44 to 0.1 μm were examined. Particle packing was calculated using the approach of Andreasen. Viscosity, green density, and pore-size distribution were measured. It was found that contouring the intermediate size distribution for particles finer than 15 μm provided the most desirable viscosity for slips composed of wide size distributions. For slips containing 50 vol% solids, the lowest viscosity obtained was 196 × 10−3 N · s/m2 (with a two-component size distribution), and a green density of 2.52 g/cm3 (65% of theoretical) was achieved with a ternary system. These casts had bimodal pore-size distributions centered around approximately 1 and 0.1μm.  相似文献   

11.
A fine-sized (∼0.1 μm), agglomerate-free Al2O3 dispersion was used to prepare homogeneous green bodies with ∼69% relative density and ∼10-nm median pore radius. Samples could be sintered at 1150°C to a relative density >99.5% and an average grain size of 0.25 μm.  相似文献   

12.
The microstructure, thermal expansion, mechanical property, and ionic conductivity of samaria-doped ceria (SDC) prepared by coprecipitation were investigated in this paper. The results revealed that the average particle size ranged from 10.9±0.4 to 13.5±0.5 nm, crystallite dimension varied from 8.6±0.3 to 10.7±0.4 nm, and the specific surface area distribution ranged from 62.6±1.8 to 76.7±2.2 m2/g for SDC powders prepared by coprecipitation. The dependence of lattice parameter, a, versus dopant concentration, x , of Sm3+ ion shows that these solid solutions obey Vegard's rule as a ( x )=5.4089+0.10743 x for Ce1− x Sm x O2−1/2 x . For SDC ceramics sintered at 1500°C for 5 h, the bulk density was over 95% of the theoretical density; the maximum ionic conductivity, σ800°C=(22.3±1.14) × 10−3 S/cm with minimum activation energy, E a=0.89±0.02 eV, was found in the Ce0.80Sm0.20O1.90 ceramic. A dense Ce0.8Sm0.2O1.9 ceramic with a grain size distribution of 0.5–4 μm can be obtained by controlling the soaking time at 1500°C. When the soaking time was increased, the microhardness of Ce0.8Sm0.2O1.9 ceramic increased, the toughness slightly decreased, which was related to grain growth with the soaking time.  相似文献   

13.
β-Si3N4 ceramics sintered with Yb2O3 and ZrO2 were fabricated by gas-pressure sintering at 1950°C for 16 h changing the ratio of "fine" and "coarse" high-purity β-Si3N4 raw powders, and their microstructures were quantitatively evaluated. It was found that the amount of large grains (greater than a few tens of micrometers) could be drastically reduced by mixing a small amount of "coarse" powder with a "fine" one, while maintaining high thermal conductivity (>140 W·(m·K)−1). Thus, this work demonstrates that it is possible for β-Si3N4 ceramics to achieve high thermal conductivity and high strength simultaneously by optimizing the particle size distribution of raw powder.  相似文献   

14.
Nanoparticles of barium holmium zirconate, a new complex perovskite ceramic oxide, has been synthesized using a modified self-propagating combustion process. The solid combustion products obtained were characterized by X-ray diffraction (XRD), electron diffraction, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, particle size analysis, surface area determination, and high-resolution transmission electron microscopy. The XRD and electron diffraction studies have shown that the as-prepared powder is phase pure Ba2HoZrO5.5 and has a complex cubic perovskite (A2BB'O6) structure with a lattice constant a = 8.428 Å. The transmission electron microscopic investigation has shown that the particle size of the as-prepared powder was in the range 4–16 nm with a mean grain size of 8.2 nm. The nanoparticles of Ba2HoZrO5.5 obtained by the present method could be sintered to 98% theoretical density at 1500°C.  相似文献   

15.
α - Al2O3 nanopowders with mean particle sizes of 10, 15, 48, and 80 nm synthesized by the doped α-Al2O3 seed polyacrylamide gel method were used to sinter bulk Al2O3 nanoceramics. The relative density of the Al2O3 nanoceramics increases with increasing compaction pressure on the green compacts and decreasing mean particle size of the starting α-Al2O3 nanopowders. The densification and fast grain growth of the Al2O3 nanoceramics occur in different temperature ranges. The Al2O3 nanoceramics with an average grain size of 70 nm and a relative density of 95% were obtained by a two-step sintering method. The densification and the suppression of the grain growth are achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The densification was realized by the slower grain-boundary diffusion without promoting grain growth in second-step sintering.  相似文献   

16.
Reactive Laser Ablation Synthesis of Nanosize Alumina Powder   总被引:1,自引:0,他引:1  
An aluminum (Al) target was laser ablated in an oxygen (O2) atmosphere, producing nanosize alumina (Al2O3) powder. The powder surface area decreased (and the particle size increased) with both increasing oxygen pressure and laser fluence. All powders produced had surface areas between 135 and 250 m2/g, corresponding to primary particle sizes ranging from 7 to 3 nm in radius. Phase evolution with temperature was studied via X-ray diffraction. These powders showed a direct transformation from γ- to α-alumina at approximately 1200°C, bypassing other transition alumina phases, while still maintaining small particle size ( 30 nm). Despite the nanosize particles, green densities equal to 54% of the skeletal density (i.e., true density of the solid phase) were obtained by uniaxial pressing at 40 MPa.  相似文献   

17.
An amphoteric water-soluble copolymer, i.e., poly(acrylamide/(α- N,N -dimethyl- N -acryloyloxyethyl) ammonium ethanate) (PAAM/DAAE), was evaluated as a novel dispersant for aqueous BaTiO3 (BT) slurries. The dispersing property of this copolymer was examined by means of rheology, sedimentation, particle size, green density, zeta potential, and leached Ba2+ concentration measurements. The results indicate that PAAM/DAAE could reduce the viscosity of slurries greatly, cause BT particle sizes to shift to smaller values, and make green compacts more consolidated. Compared with a commercial dispersant, ammonium salt of poly(methacrylic acid) (PMAA-NH4), it is as effective or even better in preparing stabilized suspensions. More importantly, PAAM/DAAE could lessen the leached Ba2+ concentration. This is related to the adsorption behavior of this copolymer onto BT particles, and the interaction between the adsorbed dispersant and dissolved barium ions.  相似文献   

18.
Seeding of the Reaction-Bonded Aluminum Oxide Process   总被引:1,自引:0,他引:1  
The effect of the initial α-Al2O3 particle size in the reaction-bonded aluminum oxide (RBAO) process on the phase transformation of aluminum-derived γ-Al2O3 to α-Al2O3, and subsequently densification, was investigated. It has been demonstrated that if the initial α-Al2O3 particles are fine (∼0.2 μm, i.e., 2.9 × 1014γ-Al2O3 particles/cm3), then they seed the phase transformation. The fine α-Al2O3 decreases the transformation temperature to ∼962°C and results in a finer microstructure. The smaller particle size of the seeded RBAO decreases the sintering temperature to as low as ∼1135°C. The results confirm that seeding can be utilized to improve phase transformations and densification and subsequently to tailor final microstructures in RBAO-derived ceramics.  相似文献   

19.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

20.
The shear modulus and yield stress of attractive alumina particle networks in aqueous slurries was determined as a function of volume fraction (0.1 to 0.5), pH (2, 4, 5, 6, and 9), and salt (NH4l) concentration (0.25M to 2.34) using both vane and couette rheological tools. Consistent with previous observations concerning the relative strength of attractive particle networks, the shear modulus increased to a plateau value with salt concentration. In this work we have shown that the salt concentration at which this plateau value is achieved is a function of the pH, and thus, the surface charge density. The values of the shear modulus [G'], yield stress [τy], and yield strain [γy] of the attractive networks can be described with power law functions for particle volume fraction [φ] (G'∝φ4.75, τy∝φ3.6, and γy∝φ−1.1) and salt concentration [c] (G'∝ [c]2.0, τ, ∝ [c]1.15, and γy∝ [c]−0.85).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号