首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A performance oriented multi-loop approach to the adaptive robust tracking control of one-degree-of-freedom mechanical systems with input saturation, state constraints, parametric uncertainties and input disturbances is presented. The control system contains three loops. In the outer loop, constrained optimization algorithms are developed to generate a replanned trajectory on-line at a low sampling rate so that the converging speed of the overall system response to the desired target is maximized while not causing input saturation and the violation of state constraints. In the inner loop, a constrained adaptive robust control (ARC) law is synthesized and implemented at high sampling rate to achieve the required robust tracking performances with respect to the replanned trajectory even with various types of uncertainties and input saturation. In the middle loop, a set-membership identification (SMI) algorithm is implemented to obtain a tighter estimate of the upper bound of the inertia so that more aggressive replanned trajectory could be used to further improve the overall system response speed. Interaction of the three loops is explicitly characterized by a set of inequalities that the design variables of each loop have to satisfy. It is theoretically shown that the resulting closed-loop system can track feasible desired trajectories with a guaranteed converging time and steady-state tracking accuracy without violating the state constraints. Experiments have been carried out on a linear motor driven industrial positioning system to compare the proposed multi-loop constrained ARC algorithm with some of the traditional control algorithms. Comparative experimental results obtained confirm the superior performance of the proposed algorithm over existing ones.  相似文献   

2.
3.
A performance oriented two-loop control approach is proposed for a class of multiple-input–multiple-output (MIMO) systems with input saturation, state constraints, matched parametric uncertainties and input disturbances. In the inner loop, a constrained adaptive robust control (ARC) law is synthesized to achieve the required robust tracking performances with respect to on-line replanned trajectory in the presence of input saturation and various types of matched uncertainties. In the outer loop, a replanned trajectory is generated by solving a constrained optimization algorithm online to minimize the converging time of the overall system response to the desired trajectory while not violating various constraints. Interaction of the two loops is explicitly characterized by a set of inequalities that the design variables of each loop have to satisfy. It is theoretically shown that the resulting closed-loop system can track feasible desired trajectories with a guaranteed converging time and steady-state tracking accuracy without violating the state constraints. Since the system in study is most appropriate to describe the dynamics of the robotic systems, the control of a two-axis planar robotic manipulator is used as an application example. Comparative simulation results demonstrate the advantage of the proposed approach over the traditional approaches in practical applications.  相似文献   

4.
We propose a novel control algorithm, probabilistically constrained predictive control, to deal with the uncertainties of system disturbances. The output is to be controlled in the constrained range with a desired probability. Under the assumption of a linear system, the formulated joint probabilistically constrained problem is convex. Thus, it can be solved with a nonlinear programming solver. The probabilities and gradients of the constraints, composed of disturbance sequences with multivariate normal distribution, are computed using an efficient simulation approach. The results of a test problem show the effectiveness of the proposed algorithm.  相似文献   

5.
一种改进的鲁棒约束预测控制器的综合设计方法   总被引:1,自引:0,他引:1  
针对多包描述的不确定系统,提出一种新的鲁棒约束预测控制器.高线设计多包系统worst-case情况下性能最优的不变集,在线求解多包系统无穷时域性能指标的rain-max优化问题.设计方法采用了时变的终端约束集,扩大了初始可行域,并能获得较优的控制性能.仿真结果验证了该方法的有效性.  相似文献   

6.
Error feedback control (in the presence of input constraints) is considered for a class of exothermic chemical reactor models. The primary control objective is regulation of a setpoint temperature T* with prescribed accuracy: given λ>0 (arbitrarily small), ensure that, for every admissible system and reference setpoint, the regulation error e=TT* is ultimately smaller than λ (that is, ||e(t)||<λ for all t sufficiently large). The second objective is guaranteed transient performance: the evolution of the regulation error should be contained in a prescribed performance funnel F around the setpoint temperature T*. A simple error feedback control with input constraints of the form , u* an offset, is introduced which achieves the objective in the presence of disturbances corrupting the measurement. The gain k(t) is a function of the error e(t)=T(t)−T* and its distance to the funnel boundary. The input constraints have to satisfy certain feasibility assumptions in terms of the model data and the operating point T*.  相似文献   

7.
This paper presents stability results for discrete-time model-based predictive control system subject to an input amplitude constraint. It is shown that the input amplitude constrained control system may provide a stable control system in the sense of BIBO when the system to be controlled is of a class of the system poles which consist of multiple integrators and a stable polynomial. The solution of Diophantine equations and their properties are addressed. Simulation study is also carried out and it is shown that the output of the system may converge to the reference signal for certain degree of constraints.  相似文献   

8.
An improved approach for constrained robust model predictive control   总被引:1,自引:0,他引:1  
In this paper, we present a new technique to address constrained robust model predictive control. The main advantage of this new approach with respect to other well-known techniques is the reduced conservativeness. Specifically, the technique described in this paper can be applied to polytopic uncertain systems and is based on the use of several Lyapunov functions each one corresponding to a different vertex of the uncertainty's polytope.  相似文献   

9.
An efficient robust constrained model predictive control algorithm with a time varying terminal constraint set is developed for systems with model uncertainty and input constraints. The approach is novel in that it off-line constructs a continuum of terminal constraint sets and on-line achieves robust stability by using a relatively short control horizon (even N=0) with a time varying terminal constraint set. This algorithm not only dramatically reduces the on-line computation but also significantly enlarges the size of the allowable set of initial conditions. Moreover, this control scheme retains the unconstrained optimal performance in the neighborhood of the equilibrium. The controller design is illustrated through a benchmark problem.  相似文献   

10.
针对多包描述线性离散不确定系统,提出一种在系统状态不可测时的直接约束鲁棒预测控制算法.将控制器与观测器综合设计,利用观测状态直接构造性能指标,通过求解无穷时域性能指标的最小最大优化问题,得到系统的最优状态反馈控制律.采用参数依赖Lyapunov函数,在满足输入和状态约束的情况下保证闭环系统稳定.仿真结果验证了算法的有效性.  相似文献   

11.
多面体不确定系统时滞依赖鲁棒预测控制   总被引:2,自引:0,他引:2  
将线性状态变换引入连续时间多面体不确定时滞系统中,利用线性矩阵不等式(LMI)方法,设计时滞相关型鲁棒预测控制器;通过适当选择Lyapunov函数,推导出闭环系统渐近稳定的充分条件,并且该条件是时滞相关的.仿真算例验证了该方法的有效性.  相似文献   

12.
This paper proposes a quadratic programming (QP) approach to robust model predictive control (MPC) for constrained linear systems having both model uncertainties and bounded disturbances. To this end, we construct an additional comparison model for worst-case analysis based on a robust control Lyapunov function (RCLF) for the unconstrained system (not necessarily an RCLF in the presence of constraints). This comparison model enables us to transform the given robust MPC problem into a nominal one without uncertain terms. Based on a terminal constraint obtained from the comparison model, we derive a condition for initial states under which the ultimate boundedness of the closed loop is guaranteed without violating state and control constraints. Since this terminal condition is described by linear constraints, the control optimization can be reduced to a QP problem.  相似文献   

13.
This paper addresses robust constrained model predictive control (MPC) for a class of nonlinear systems with structured time‐varying uncertainties. First, the Takagi‐Sugeno (T‐S) fuzzy model is employed to represent a nonlinear system. Then, we develop some techniques for designing fuzzy control which guarantees the system stabilization subject to input and output constraints. Both parallel and nonparallel distributed compensation control laws (PDC and non‐PDC) are considered. Sufficient conditions for the solvability of the controller design problem are given in the form of linear matrix inequalities. A simulation example is presented to illustrate the design procedures and performances of the proposed methods. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper presents a systematic method to address the reduction of online computational complexity and infeasibility problem of explicit model predictive control for constrained systems under external disturbance. In feasible state space, in order to avoid the expensive database searching procedure, support vector machine‐based approximation is proposed to yield a novel unified explicit optimal control law rather than a piecewise affine one developed by explicit model predictive control. In infeasible state space, through constructing finite maximum control invariant sets around fictitious equilibrium points, a reachable controller is devised to steer the infeasible state asymptotically to the feasible state space without violating the hard constraint. Consequently, global robustness is guaranteed by introducing a minimum robust positively invariant set by means of the tube‐based technique, despite the coexistence of external disturbance and training error. Finally, the performance of the presently proposed control law is evaluated through three groups of numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Young Il  Basil   《Automatica》2006,42(12):2175-2181
In this paper, a receding-horizon control method for input/state constrained systems with polyhedral uncertainties is proposed. The dual-mode prediction strategy is adopted to deal with the constraints and periodically-invariant sets are used to derive a target invariant set of the dual-mode prediction strategy. The proposed control method is shown to have novel characteristics earlier approaches do not have i.e.: (i) the convex-hull of all the periodically invariant sets are invariant in the sense that there are feasible feedback gains guaranteeing invariance for any elements of the convex-hull and it provides larger target sets than other methods based on ordinary invariant sets. (ii) A particular convex-hull of periodically invariant sets, that is computable off-line, can be used as an invariant target set. In this case the number of on-line variables is only equal to the period of invariance and thus the proposed algorithm is computationally very efficient. These on-line variables provide interpolation between different feedback gains to yield best performance.  相似文献   

16.
17.
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.  相似文献   

18.
Convection–diffusion–reaction processes widely exist in chemical engineering and other sectors of industry. In many cases, these systems are convection-dominated and can be modelled by parabolic partial differential equations (PDEs) with a relatively dominant convection term. The control of these systems using traditional solution methods requires demanding computation to achieve high control performance. In this paper, a predictive control approach is developed for these systems using a new solution technique that combines the method of characteristics and finite difference approximation. The study shows that the proposed control approach is able to provide a computationally efficient control for convection-dominant parabolic systems.  相似文献   

19.
20.
A novel robust predictive control algorithm is presented for uncertain discrete-time input-saturated linear systems described by structured norm-bounded model uncertainties. The solution is based on the minimization, at each time instant, of a semi-definite convex optimization problem subject to a number of LMI feasibility constraints which grows up only linearly with the control horizon length N. The general case of arbitrary N is considered. Closed-loop stability and feasibility retention over the time are proved and comparisons with robust multi-model (polytopic) MPC algorithms are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号