首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
蔡振平 《电池》2007,37(5):351-353
采用高温固相法制备了改性LiMn2O4锂离子电池正极材料.利用TG-DSC、XRD、EDS和充放电测试等研究了LiCoO2的掺入对改性LiMn2O4的形成过程、结构及电化学性能的影响.结果表明:在850℃下热处理8 h,能够形成完整的尖晶石型LiMn2O4结构.当n(LiCoO2):n(LiMn2O4)为0.3时,10次循环后(55℃),改性LiMn2O4的容量保持率由LiMn2O4的89.9%提高到99.0%.  相似文献   

2.
采用高温分段固相反应法合成了具有尖晶石结构的锂离子电池正极材料LiMn2O4,并对其掺杂ZrO2,制得了LiMn2-xZrxO4(x=0~0.02)。对材料进行了XRD测试、粒度分析及恒电流充放电测试。试验结果表明,掺杂了微量元素Zr合成的正极材料具有完整的尖晶石结构,经100次充放电循环后材料比容量为102mAh/g,具有较好的电化学性能和循环稳定性。  相似文献   

3.
用恒流充放电、EIS、SEM和XRD等方法,研究了锂离子电池用LiCoO2-LiMn2O4混合正极的过充电及安全性能.m(LiCoO2)∶m(LiMn2O4)=3∶2时的协同效应最好,以0.2 C在4.3~2.7 V充放电,首次放电比容量为136.9 mAh/g,为理论值的89.6%;4.8 V过充循环5次后,混合材料的容量保持率为92.34%,结构稳定.  相似文献   

4.
尖晶石LiMn2O4的改性与性能   总被引:2,自引:0,他引:2  
卢世刚  李明勋  黄松涛  刘人敏 《电池》2002,32(Z1):34-35
将LiMn2O4分别与Li2CO3、Co3O4以及Li2CO3+Co3O4混合物在800℃高温处理,利用恒电流充放电法测量了材料的比容量,经处理后材料的比容量均低于LiMn2O4的放电容量,但循环性能比处理前好;通过XRD的分析,材料的结构仍保持了尖晶石的特征.  相似文献   

5.
正尖晶石LiMn2O4的合成与电化学性能研究   总被引:3,自引:0,他引:3  
采用高温固相反应原理合成了LiMn2O4锂离子电池正极材料,研究了合成原料中n(Li)/n(Mn)(摩尔比)和合成温度以及掺杂金属钴元素对合成产物性能和结构的影响,恒电流充放电结果麦明LiMn2O4容量为115~120mAh/g,掺杂钴以后容量下降而循环性能改善,XRD测试分析表明合成产物具有正尖晶石结构;通过进一步优化材料的粒度和电极制备时控制导电剂的加入量,确定了提高LiMn2O4的容量、改善材料循环性能的其他因素.以合成产物为阴极材料,MCMB为阳极材料,组装的18650型锂离子电池的容量达到了1250mAh,循环300次后容量保持70%左右.  相似文献   

6.
牛少军  陈猛  蒲俊红 《电池工业》2007,12(6):403-407
采用溶胶-凝胶法合成了尖晶石型LiMn2O4及其掺杂改性的LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)正极材料。通过X射线衍射对材料的晶体结构进行了分析,通过恒电流充放电、循环伏安和电化学阻抗测试技术对材料的电化学性能进行了测试。实验结果表明,所制备的材料LiMn2O4和LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)均具有良好的尖晶石结构,其中材料LiCo0.025Ni0.025Mn1.95O4的电化学性能最佳。以0.2C倍率循环充放电,首次放电比容量可达119.94mAh/g,50次循环后放电比容量仍保持在117.78mAh/g以上,容量保持率为98.20%。  相似文献   

7.
将LiMn2O4和LiCoO2在强力混合机中混合均匀,获得均匀的共混正极材料。通过电化学测试研究了LiMn2O4/LiCoO2两种电极材料混合比例对锂离子电池循环性能的影响,并比较了LiMn2O4与LiCoO2混合前后在常温和高温环境下循环性能的差异。实验结果表明:在LiMn2O4与LiCoO2共混后制得的锂离子电池在常温和高温环境下都具有良好的循环性能。  相似文献   

8.
将LiMn2O4置于LiAc和CoAc2的混合溶液中,缓慢蒸干溶液,煅烧后获得了包覆LiCoO2的LiMn2O4材料。通过电化学测试研究了钴的包覆量、煅烧温度、煅烧时间对包覆LiCoO2的LiMn2O4材料循环性能的影响,并比较了包覆Li CoO2前后,LiMn2O4材料分别在常温和高温环境下循环性能的差异。实验结果表明,在LiMn2O4的表面包覆LiCoO2,可以使LiMn2O4在常温和高温环境下获得良好的循环性能。  相似文献   

9.
LiMn2O4的结晶度对电化学性能的影响   总被引:1,自引:1,他引:0  
刘昊  何涌  包鲁明  李芳芳  杨眉 《电池》2006,36(4):271-273
对燃烧法制备的LiMn2O4材料的团聚体粒度、晶体粒度、晶体形貌和结晶度与电化学性能的关系进行了研究。以LiMn2O4的理论密度与实测密度的差值为依据,定量确定了LiMn2O4晶相的结晶度。结果表明:结晶度不同的材料具有明显不同的比容量和首次充放电效率。结晶度高的LiMn2O4材料首次放电比容量可达135 mAh/g,首次放电效率为92%;而结晶度相对较低的LiMn2O4材料首次放电比容量仅为104 mAh/g,首次放电效率为78%。  相似文献   

10.
锂离子蓄电池正极材料LiMn2O4掺钒的研究   总被引:4,自引:0,他引:4  
陈昌国  余丹梅  张苏红  朱伟  黄宗卿 《电源技术》2001,25(4):262-263,274
采用低温液相碳酸盐法合成了掺杂钒的Li-Mn-O正极材料.X射线衍射分析表明当掺钒量小于20%,合成的电极材料Li-V-Mn-O仍能保持LiMn2O4的尖晶石结构,当掺钒量超过20%则合成产物中不含尖晶石结构的LiMn2O4.循环伏安和恒电流充放电实验证实掺杂钒可改善Li-Mn-O正极材料电化学反应的可逆性,并提高其比容量;掺钒量大于10%时,合成产物中出现杂质相导致电极材料电化学性能下降.  相似文献   

11.
为提高锂离子电池正极材料尖晶石型LiMn2O4的大电流放电性能,以TiO2和LiF为掺杂体采用固相法制备了LiMn1.98Ti0.02O3.998F0.002,并与未掺杂的LiMn2O4进行性能比较。X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,LiMn1.98Ti0.02O3.998F0.002具有与LiMn2O4同样的尖晶石结构,并且颗粒细小,粒度分布窄,颗粒表面光滑。电化学测试结果显示,LiMn1.98Ti0.02O3.998F0.002具备大电流放电能力和良好的循环稳定性。  相似文献   

12.
溶胶凝胶法合成LiMn2-xCoxO4及其性能研究   总被引:2,自引:0,他引:2  
为了改善LiMn2 O4 作为锂离子蓄电池正极材料的循环可逆性能 ,我们采用溶胶 凝胶法掺杂合成了形如LiMn2 x CoxO4 的化合物 ,并用粉末X射线衍射技术 (XRD)研究了产物的晶体结构与电化学性能的关系。研究结果表明 ,在掺杂量 (即x值 )不是很大时 ,材料都能保持较好的尖晶石结构。在LiMn2 O4 中掺杂Co可明显地改善LiMn2 O4 的循环可逆性能。当x =0 .0 5时 ,5 0次循环后的容降由LiMn2 O4 的 10 %降低到 4%。同时 ,掺Co还可提高材料的大电流放电性能。当x =0 .1时 ,1C倍率放电容量与 0 .2C倍率放电容量的百分比值由LiMn2 O4 的 78%提高到 89%。  相似文献   

13.
锂离子二次电池正极材料的研制进展   总被引:14,自引:2,他引:12  
彭忠东  杨建红  邓朝阳  刘业翔 《电池》1999,29(3):125-127
综述了锂离子二次电池正极材料的研究进展,着重叙述了LiCoO2、LiNiO2、LiMn2O4及被修饰的LiCoO2、LiNiO2、LiMn2O4正极材料的合成方法。  相似文献   

14.
表面包覆尖晶石型LiMn2O4电化学性能研究   总被引:1,自引:0,他引:1  
金超  吕东生  李伟善  刘煦  邱仕洲 《电池工业》2004,9(6):290-292,299
介绍了用软化学法制备表面包覆有LiCoxMn2-xO4的尖晶石型LiMn2O4,以及用循环伏安、恒流充放电和电位衰减方法试验了包覆前后样品的电化学性质。试验结果表明:包覆样品比未包覆的初始容量低;经50次循环后,未包覆样品的容降为56.2%,而表面包覆样品的容降则为33.5%,而且,包覆样品在电解液中的化学稳定性明显比未包覆样品高。结果还表明:表面层LiCoxMn2-xO4的存在减少了LiMn2O4在电解液中的溶解,提高了尖晶石型LiMn2O4的循环稳定性。  相似文献   

15.
采用特殊共沉淀法制备出了类球形碱式碳酸钴,通过一系列煅烧工艺,最终制得高性能LiCoO2材料.同时与国内常规生产工艺,即以草酸钴为主要原料最终制得的LiCoO2材料进行了对比和分析.结果表明,以碱式碳酸钴为主要原料制备的LiCoO2材料:I003/I104、I006/I104和I006/I003值大、结晶度高、晶粒尺寸大、密度大、比表面积小、压实性能优良,具有较高的比容量和优异的循环稳定性.  相似文献   

16.
高倍率LiMn_2O_4锂离子电池的制作与性能   总被引:1,自引:0,他引:1  
采用商品化的LiMn2O4和石墨作为正极材料制作锰酸锂动力电池,并利用XRD、SEM等分析手段表征了LiMn2O4原料。研究了不同面密度和导电剂含量对锰酸锂电池倍率性能的影响。研究发现,锰酸锂电池的倍率性能随着面密度的减小而改善,随着导电剂含量的增加先改善后变差。当正极面密度未2.5 g/dm2,导电剂含量为3%时电池的倍率性能最好。20 C放电容量为1 C的94.1%,1C充电5 C放电,100次循环后容量保持率为92%。  相似文献   

17.
牛少军  陈猛  宋晓娜  莫明亮 《电源技术》2007,31(11):893-896
采用溶胶-凝胶法合成了LiCoO2包覆改性的尖晶石型LiMn2-xCrxO4(x=0,0.05,0.1)正极材料.XRD表征改性材料均具有良好的尖晶石型结构;扫描电子显微镜(SEM)显示改性样品具有更好的颗粒分散度和表面形貌;充放电表明改性样品的循环性能均具有不同程度的提高,其中样品5%LiCoO2-LiMn1.95Cr0.05O4与未改性或仅掺杂Cr的材料相比较,更好地抑制了可逆容量在循环充放电中的衰减,50次循环充放电容量(122.3~112.4 mAh/g)仍保持在91.9%以上.循环伏安和电化学阻抗测试也表明该材料具有良好的充放电可逆性和较小的阻抗.  相似文献   

18.
锂离子蓄电池热稳定性的机理   总被引:1,自引:0,他引:1  
研究了18650型锂离子蓄电池及其组分的热稳定性。热箱实验证明LiMn2O4组装的电池,比LiCoO2和包埋-LiNiO2组装的电池安全性好。通过X射线衍射光谱法(XRD)和差示扫描量热法(DSC)进一步确定在升温过程中正极/负极材料的热量释放过程和差异。结果表明,LiCoO2和包埋-LiNiO2组装的电池热失控主要是由正极的分解及其和电解液反应的放热造成;而LiMn2O4电池爆炸的主要原因是高温下石墨嵌锂和金属锂沉积与聚偏氟乙烯(PVDF)、电解液之间的反应。  相似文献   

19.
姚耀春  戴永年  杨斌  马文会 《电池》2007,37(2):83-85
采用超声空化-固相合成法制备尖晶石LiMn2O4,用TG-DTA、XRD、SEM、激光粒度分析和充放电测试等研究了超声空化对材料的组成、晶体结构、表观形貌、粒度分布和电化学性能的影响.结果表明:超声空化产生的机械活化效应降低了材料的合成温度,提高了尖晶石LiMn2O4的结晶度和结构稳定性;超声空化对材料制备过程中的加速成核和控制晶核的生长是有利的,能得到较好的颗粒形貌和粒度分布;经过超声空化预处理的样品的首次放电比容量为125.34 mAh/g,20次循环后的容量仅衰减5.54%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号