首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed a prospective study in 17 consecutive patients following Autologous bone marrow (BM) or rhG-CSF primed peripheral blood item cell (PBSC) transplantation, with the objective of comparing immune recovery between both procedures and to evaluate results in rhG-CSF mobilized peripheral blood stem cell transplantation (PBSCT). Kinetics of immune reconstitution showed differences, with a faster recovery of CD3+ and CD8+ T cells, and a more rapid and sustained recovery of CD8+/-/CD56+ natural killer (NK) cells in the PBCSCT group. Autologous bone marrow transplantation (ABMT) was associated with a improved reconstitution of the CD19+/CD5+/-subpopulation. Moreover, rhG-CSF mobilized PBSCT generated a greater recovery of CD8+/-/CD56+ cells than previous data concerning transplantation with peripheral blood (PB) progenitors collected after myelosuppressive chemotherapy or myelosuppressive therapy plus rhG-CSF. Our results show differences in the rate and pattern of B and T lymphocytes reconstitution after ABMT and PBSCT. Additionally, we state an enhancement of CD56+ cells in patients undergoing PBSCT mobilized solely using rhG-CSF.  相似文献   

2.
The transplantation of mobilized progenitor cells after high-dose chemotherapy shortens haemopoietic engraftment. CD34 cell subsets were examined in 20 consecutive mobilized progenitor cell collections obtained from patients with solid tumours that had not been previously treated. The analysis of CD34 cells was based on the expression of intracellular antigens, surface antigens including CD38, and cell size using multi-dimensional flow cytometry. We also correlated the numbers of stem cell subsets reinfused to haemopoietic recovery. The majority of CD34+ cells expressed CD13 and CD33. A significant proportion was cytoplasmic myeloperoxidase (cMPO) positive. CD34+ MPO+ cells increased significantly in late collections. MPO expression was related to cell size. Cells expressing CD13 also increased in late collections in parallel to CFU-GM count. Small subpopulations of CD34+ CD38+ were committed to B cells, T cells and erythroid cell lineages. A small population expressing the megakaryocytic antigen had a small size and were predominantly CD38-. A minor subpopulation expressed stem cells antigens. These were significantly higher in late collections (CD34+ Thy-1+ and CD34+ CD33-). After mobilization, patients received three cycles of intensive chemotherapy followed by reinfusion of mobilized progenitors (5.45 x 10(6)/kg CD34+ cells, range 3.4-11.88). The numbers of reinfused CD34 cells or the individual subsets did not influence recovery of leucocytes (9 d) or platelets (9 d). In conclusion, the numbers of stem cells and their subsets differed between collections and, in unpretreated patients receiving intensive chemotherapy, there was no delayed engraftment when sufficient numbers of stem cells were reinfused. The recovery period was short and not correlated to any stem cell subsets.  相似文献   

3.
We are investigating the use of tumor-pulsed dendritic cell (DC)-based vaccines in the treatment of patients with advanced cancer. In the current study, we evaluated the feasibility of obtaining both CD34+ hematopoietic stem/ progenitor cells (HSCs) and functional DCs from the same leukapheresis collection in adequate numbers for both peripheral blood stem cell transplantation (PBSCT) and immunization purposes, respectively. Leukapheresis collections of mobilized peripheral blood mononuclear cells (PBMCs) were obtained from normal donors receiving granulocyte colony-stimulating factor (G-CSF) (for allogeneic PBSCT) and from intermediate grade non-Hodgkin's lymphoma or multiple myeloma patients receiving cyclophosphamide plus G-CSF (for autologous PBSCT). High enrichment of CD34+ HSCs was obtained using an immunomagnetic bead cell separation device. After separation, the negative fraction of mobilized PBMCs from normal donors and cancer patients contained undetectable levels of CD34+ HSCs by flow cytometry. This fraction of cells was then subjected to plastic adherence, and the adherent cells were cultured for 7 days in GM-CSF (100 ng/ml) and interleukin 4 (50 ng/ml) followed by an additional 7 days in GM-CSF, interleukin 4, and tumor necrosis factor alpha (10 ng/ml) to generate DCs. Harvested DCs represented yields of 4.1+/-1.4 and 5.8+/-5.4% of the initial cells plated from the CD34+ cell-depleted mobilized PBMCs of normal donors and cancer patients, respectively, and displayed a high level expression of CD80, CD86, HLA-DR, and CD11c but not CD14. This phenotypic profile was similar to that of DCs derived from non-CD34+ cell-depleted mobilized PBMCs. DCs generated from CD34+ cell-depleted mobilized PBMCs elicited potent antitetanus as well as primary allogeneic T-cell proliferative responses in vitro, which were equivalent to DCs derived from non-CD34+ cell-depleted mobilized PBMCs. Collectively, these results demonstrate the feasibility of obtaining both DCs and CD34+ HSCs from the same leukapheresis collection from G-CSF-primed normal donors and cancer patients in sufficient numbers for the purpose of combined PBSCT and immunization strategies.  相似文献   

4.
Mobilized CD34+ blood cells were immunomagnetically enriched from leukapheresis products in five multiple myeloma (MM) patients. Thawed samples of selected CD34+ cells were cultured for up to 21 d in a liquid and stroma-free culture system with different combinations of recombinant cytokines. The most successful cell expansion was obtained when a combination of rh-IL-1beta, rh-IL-3, rh-IL-6, rh-SCF, rh-G-CSF and rh-GM-CSF was used. After 14 d this mixture gave a 120-187-fold overall increase of total nuclear cells and a 4-8-fold overall increase of early CFU-GM numbers. In four patients a very sensitive patient-specific PCR analysis showed the presence of monoclonal cells in the initial leukapheresis products. After immunomagnetic separation a tumour cell depletion of 2-4 logs was observed, although all samples still contained malignant cells. Cell suspensions that were cultured with the most potent cytokine combination showed tumour contamination in two-thirds of evaluable cases at the moment of maximal CFU-GM output. Serial cDNA dilution experiments indicated that the positive PCR results at day 14 reflected the persistence of pre-culture tumour cells rather than in vitro expansion of tumour cells in two cases. This study demonstrates that ex vivo expansion of myeloid precursor cells from mobilized CD34+ cells in MM patients does not always result in an effective purging of residual tumour cells. On the other hand, our culture conditions do not seem to favour in vitro expansion of malignant cells, despite the use of a cytokine cocktail that includes potential myeloma growth factors.  相似文献   

5.
High-dose therapy with autografting of peripheral blood stem cells (PBSCs) has become an accepted treatment modality. However, gene-marking studies in patients with acute myeloid leukemia and neuroblastoma have revealed that malignant cells reinfused along with leukapheresis products (LPs) contribute to relapse. Thus, a reduction in the number of malignant cells in autografts is desirable. We analyzed the percentage of malignant cells and the number of CD34+ PBSCs in LPs mobilized by granulocyte colony-stimulating factor (G-CSF) alone (LP-S) compared with high-dose cyclophosphamide plus G-CSF (LP-CY) in patients with multiple myeloma (MM). A quantitative polymerase chain reaction assay involving CDR3-specific primers based on the method of limiting dilutions was used to determine the tumor loads of LPs. Sixteen LPs from eight patients with MM were analyzed intraindividually in matched pairs. The percentage of malignant cells was lower in LP-CY (p = 0.017; median 0.0067 vs. 0.009%), whereas the number of CD34+ cells was higher (p = 0.012; median 0.3 vs. 0.095%). The calculated number of malignant cells per CD34+ cell was significantly lower in LP-CY as well (p = 0.017). We conclude that mobilization by cyclophosphamide plus G-CSF leads to a lower number of malignant cells per CD34+ cell in LPs compared with G-CSF alone.  相似文献   

6.
Many centers use CY and G-CSF to mobilize PBPC. In this study we explored whether a standard chemotherapy regimen consisting of mitoguazon, ifosfamide, MTX and etoposide (MIME) combined with G-CSF was capable of mobilizing PBPC in lymphoma patients. Twelve patients with Hodgkin's disease (HD) and 38 patients with non-Hodgkin's lymphoma (NHL) were mobilized with MIME/G-CSF. Most patients were heavily treated with different chemotherapy regimens receiving a median of 11 cycles (range 3 to 20) of chemotherapy prior to mobilization. It was found that the optimal time of PBPC harvest was at days 12 and 13 after initiating the mobilization regimen. The median number of collected CD34+ cells per kg body weight was 7.1 x 10(6) (range 0.5-26.2). More than 2.0 x 10(6) CD34+ cells/kg were achieved in 69% of the patients after one apheresis. When additional cycles of apheresis were done, only 6% failed to harvest this number of CD34+ cells. There was a statistically significant inverse correlation between the number of prior chemotherapy cycles and CD34+ cell yield (P = 0.003). No such association was found between CD34+ cell yield and prior radiotherapy. When MIME/G-CSF was compared with Dexa-BEAM/G-CSF, it was found that MIME/G-CSF tended to be more efficient in mobilizing PBPC in spite of being less myelotoxic. All patients transplanted with MIME/G-CSF mobilized PBPC had fast and sustained engraftment. These results demonstrate that an ordinary salvage chemotherapy regimen, such as MIME combined with G-CSF can be successfully used to mobilize PBPC.  相似文献   

7.
2-Hydroxyisonicotinate dehydrogenase isolated from Mycobacterium sp. INA1   总被引:1,自引:0,他引:1  
The objective of this study was to identify factors associated with poor mobilization of peripheral blood progenitor cells (PBPCs) or delayed platelet engraftment after high-dose therapy and autologous stem cell transplantation in patients with lymphoma. Fifty-eight patients with Hodgkin's disease or non-Hodgkin's lymphoma underwent PBPC transplantation as the "best available therapy" at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1993 and 1995. PBPCs were mobilized with either granulocyte colony-stimulating factor (G-CSF) alone (n = 19) or G-CSF following combination chemotherapy (n = 39). Forty-eight of these patients underwent a PBPC transplant, receiving a conditioning regimen containing cyclophosphamide, etoposide, and either total body irradiation, total lymphoid irradiation, or carmustine. A median number of 4.6 x 10(6) CD34+ cells/kg were obtained with a median of three leukapheresis procedures. Mobilization of PBPCs using chemotherapy plus G-CSF was superior to G-CSF alone (6.7 x 10(6) versus 1.5 x 10(6) CD34+ cells/kg; P = 0.0002). Poorer mobilization of progenitor cells was observed in patients who had previously received stem cell-toxic chemotherapy, including (a) nitrogen mustard, procarbazine, melphalan, carmustine or > 7.5 g of cytarabine chemotherapy premobilization (2.0 x 10(6) versus 6.0 x 10(6) CD34+ cells/kg; P = 0.005), or (b) > or = 11 cycles of any previous chemotherapy (2.6 x 10(6) versus 6.7 x 10(6) CD34+ cells/kg; P = 0.02). Platelet recovery to > 20,000/microliter was delayed in patients who received < 2.0 x 10(6) CD34+ cells (median, 13 versus 22 days; P = 0.06). Patients who received > or = 11 cycles of chemotherapy prior to PBPC mobilization tended to have delayed platelet recovery to > 20,000/microliter and to require more platelet transfusions than less extensively pretreated patients (median, 13.5 versus 23.5 days; P = 0.15; median number of platelet transfusion episodes, 13 versus 9; P = 0.17). These data suggest that current strategies to mobilize PBPCs may be suboptimal in patients who have received either stem cell-toxic chemotherapy or > or = 11 cycles of chemotherapy prior to PBPC mobilization. Alternative approaches, such as ex vivo expansion or the use of other growth factors in addition to G-CSF, may improve mobilization of progenitor cells for PBPC transplantation.  相似文献   

8.
目的 研究外周血造血干细胞移植( PBSCT)供者外周血干细胞动员采集的方法及其效 果。方法 198名健康供者每天皮下注射重组人粒细胞集落刺激因子(rhG-CSF)(5~10) μg/kg进行外周血干细胞动员,第5天开始采集。采用血细胞分析仪行单个核细胞( MNC)计数,流式细胞术(FCM)行CD34+细胞计数。分析供者性别、身高、年龄、采集当天外周血白细胞(WBC)计数对动员采集效果的影响。结果所有供者均成功动员采集,采集当天的MNC计数平均为(4.19±1.96)×108/kg,CD34+细胞计数平均为(2.98±1.40) ×106/kg; MNC和CD34+细胞计数与供者性别、身高、年龄无关;采集当天外周血WBC计数与MNC、CD34+细胞计数呈正相关(r= 0.9201,P=0.0035;r=0.8420,P= 0.0149);采集当天外周血WBC计数≥20.0×109/L的供者比<20.0×109/L的供者采集效果更显著(F=4.688,P= 0.0013;F= 4.622,P=0.0006)。结论rhG-CSF动员的健康供者采集当天外周血WBC计数是一项预测CD34+细胞采集数量的简单、可行的指标。  相似文献   

9.
BACKGROUND: We compared hematopoietic progenitor cell (HPC) collection and neoplastic cell contamination in breast cancer patients given cyclophosphamide (CTX) plus granulocyte-colony stimulating factor (G-CSF) or G-CSF alone for mobilization. PATIENTS AND METHODS: In 57 stage II-III breast cancer patients, CD34+ cells, colony-forming units-granulocyte macrophage (CFU-GM), early HPC and breast cancer cells were counted in HPC collections obtained after CTX plus G-CSF (n = 27) or G-CSF-alone mobilization (n = 30). RESULTS: The CD34+ cell collection was about two-fold greater after CTX plus G-CSF mobilization (11.0 +/- 7.9 vs. 5.8 +/- 3.5 x 10(6)/kg, P < 0.001). Similarly, the total number of CFU-GM, CD34+CD38- cells and of week-5 cobblestone area forming cells (CAFC) collected was significantly higher in patients mobilized with CTX plus G-CSF. Breast cancer cells were found in the apheresis products of 22% of patients mobilized with CTX plus G-CSF and in 10% of patients mobilized with G-CSF alone (P = 0.36). Of seven patients who failed G-CSF-alone mobilization and eventually underwent chemotherapy plus G-CSF mobilization, none had cytokeratin-positive cells after G-CSF mobilization, whereas four out of seven had cytokeratin-positive cells after chemotherapy plus G-CSF (P = 0.07 by chi 2 test). CONCLUSION: The CTX plus G-CSF mobilization protocol was associated with a significantly higher HPC collection. However, this benefit was not accompanied by a reduction in the incidence of tumor-contaminated HPC graft.  相似文献   

10.
PURPOSE: To evaluate the reliability of CD34/CD33 subset enumeration as a predictor of hematopoietic repopulating potential in autologous blood stem-cell transplantation and to determine which patient and treatment-related factors affect the timing, quantity, and type of blood stem cells mobilized. PATIENTS AND METHODS: We analyzed blood stem-cell collections from 410 consecutive cancer patients who received mobilization therapy and evaluated factors, including CD34+ subset quantities, that might influence engraftment kinetics and transfusion requirements in autologous blood stem-cell recipients. RESULTS: The majority of patients (97%) mobilized CD34+33- cells, which were usually collected in the greatest quantity on the first day of apheresis. Patients who received only growth factor mobilized the highest percentage of CD34+33- cells. Extensive prior chemotherapy limited the collection of CD34+33- cells. In addition to patient diagnosis (P < .006) and total CD34+ cell dose (P = .0001), CD34+33- cell dose (P < .005) and percentage of CD34+33- cells (P < .005) were identified as independent factors significantly predictive of engraftment kinetics. CD34+33- cell dose (R2 < or = .177; P < .0001) was a strong and the only significant predictor of RBC and platelet transfusion requirements. Furthermore, independent of the total CD34+ cell dose, as the CD34+33- cell dose increased, days to neutrophil recovery, days to platelet recovery, and transfusion requirements decreased. CONCLUSION: These findings show that CD34+33- cells are readily collected in most cancer patients and significantly influence engraftment kinetics and transfusion requirements in autologous blood stem-cell recipients. CD34+33- cell quantity of the blood stem-cell graft appears to be a more reliable predictor of hematopoietic recovery rates than total CD34+ cell quantity in this setting.  相似文献   

11.
We examined the efficiency of disease-specific "standard" chemotherapies epirubicin, cyclophosphamide (EC); cyclophosphamide, vincristine, doxorubicin, etoposide, prednisolone (CHOEP); epirubicin, ifosfamide (EPI/IFOS) for peripheral blood progenitor cell (PBPC) mobilization in comparison to well-characterized mobilization protocols, i.e. etoposide, ifosfamide, cisplatin, epirubicin (VIPE) and dexamethasone, carmustine, etoposide, cytarabine, melphalan (DexaBEAM). Twenty-seven patients with various malignancies underwent 75 apheresis procedures for PBPC collection. Median cell yields from all 75 aphereses were 1.18 x 10(5) mononuclear cells/kg [range (0.28-3.7) x 10)8)], 1.4 x 10(5) granulocyte/macrophage-colony-forming units (CFU-GM)/kg [range (0.2-11) x 10(5)] and 3.3 x 10(6) CD34+cells/kg [range (0.35-17.7) x 10(6). CD34+/ CD90+ cells could be mobilized by all mobilization regimens used. The difference observed in the mobilization of CD34+ cells was only of low significance when the mobilization regimens were compared, whereas the mobilizations of MNC and CFU-GM were significantly different between the groups. Breast cancer patients treated with the VIPE regimen (including pretreated women) had a significantly higher CFU-GM rate than patients treated with EC (P=0.0005). Mobilized CD34+ PBPC were correlated with CFU-GM in all apheresis products. The linear correlation coefficients differed for the various mobilization groups: DexaBEAM (r=0.9, P < 0.0001), VIPE (r=0.68, P=0.0024), CHOEP (r=0.52, P=0.022), EPI/ IFOS (r=0.34, P=0.11) and EC (r=0.23, P=0.2). We conclude that clonogenic assays can provide additional information about the autotransplant quality, particularly when alternative or new mobilization regimens are being investigated.  相似文献   

12.
We evaluated the usefulness of an automated hematology analyzer (SE-9000) for the identification and counting of peripheral blood stem cells (PBSCs). The samples tested were from 14 patients with hematological malignancies. Peripheral blood samples were collected from the subjects before and after a course of chemotherapy. From the leukapheresis sample, CD34+ cells, assumed to be hematopoietic stem cells, were obtained with an immunomagnetic cell separator. The CD34+ cells obtained accumulated in the gate corresponding to low recurrent frequencies of the automated hematology analyzer. This gate shows results of the 'immature information' (IMI) channel. Software for detection of only the cells that accumulated in this gate was therefore developed. With this trial program, the regression coefficient between the percentage of leukocytes from the blood samples that were CD34+ and the percentage of such leukocytes that appeared on the IMI channel was 0.79. With this analyzer, the number of PBSC could be counted in about 80 s. The identification and counting of cells picked up by the IMI channel should be clinically useful for the monitoring of changes in PBSC after chemotherapy for mobilization.  相似文献   

13.
The aim of this study was to analyze factors affecting mobilization and engraftment in 40 children undergoing autologous peripheral blood progenitor cell transplantation for different malignancies: 19 patients with haematological malignancies and 21 patients with solid tumors. Patients received 4-5 days of rhG-CSF (12 micrograms/kg/day) subcutaneously. Apheresis was performed by continuous flow blood cell separation beginning on the fifth day of rhG-CSF. For patients weighing < or = 25 kg, the extracorporeal line was primed with irradiated red blood cells. After myeloablative conditioning regimens, patients were grafted with 7.21 +/- 7.8 x 10(6)/kg CD34+ cells. Days to achieve an absolute neutrophil count > 0.5 x 10(9)/1 and a platelet count > 20 x 10(9)/1 without platelet support were 9.50 +/- 1.2 (range 7-13) and 18.1 +/- 8.3 (range 9-37), respectively. The number of CD34+ cells infused was highly correlated with engraftment kinetics (P = 0.0001). The patient's body weight and the number of previous chemotherapy courses had a negative influence on CD34+ cells collected.  相似文献   

14.
Interphase fluorescence in situ hybridization (FISH) for the translocation t(9;22) is widely used for quantifying minimal residual disease (MRD) in PBSC harvests from CML patients. We investigated the influence of cell composition on the percentage of positive FISH signals in 17 BCR/ABL-positive leukapheresis products from 12 CML patients. In these PBSC harvests, a significant correlation between the percentage of nonlymphocytic nucleated cells and BCR/ABL positivity was measured (k=0.81). This correlation was not seen in patients who became BCR/ABL negative after mini-ICE chemotherapy. CD34 enrichment was performed by immunomagnetic separation in 7 patients. There was a statistically significant increase in BCR/ABL positivity after CD34+ selection (p=0.018). This may have been caused by passive depletion of BCR/ABL-negative lymphocytes. Our findings suggest that quantitative results of t(9;22) FISH have to be corrected for cell composition when comparing different stem cell products. CD34+ selection before FISH analysis may be one way to enrich for nonlymphocytic cells and to concentrate on the progenitor compartment.  相似文献   

15.
The flow cytometric enumeration of CD34+ hemopoietic precursor cells (HPC) present in samples used for transplantation of HPC has proven to be the most powerful single parameter for prediction of engraftment. At present, several different methodological approaches are used for the flow cytometric enumeration of CD34+ HPC. In the present study we have compared two of these methods as regards enumeration of CD34+ HPC and their CD34+/CD19- and CD34+/CD19+ subsets: a lyse-non-wash procedure based on the use of a recently commercialized red cell lysing solution (Quicklysis, Cytognos, Salamanca, Spain) and a lyse-and-then-wash method in which the Becton Dickinson (San Jose, CA) FACS Lysing Solution was used. For that purpose a total of 52 samples corresponding to 20 G-CSF mobilized peripheral blood (PB) samples and 21 PB-derived leucapheresis products from patients undergoing autologous PB stem cell harvest, together with 11 bone marrow (BM) samples from healthy volunteers were analyzed. Our results show that for each of the three types of samples analyzed the use of the lyse-and-then-wash method is associated with significantly lower numbers of both total CD34+ HPC (P < or = 0.003) and its major CD34+/CD19- subset (P < or = 0.01) while no significant changes are detected in the number of CD34+/CD19+ HPC in BM samples (P > 0.05). The use of an internal standard (reference beads) added just prior to data acquisition, showed that the differences between both methods are due to a selective loss of CD34+ HPC and its major CD34+/CD19- subset in BM (P=0.002 and P=0.003), PB (P < 0.0001 and P < 0.0001) and PB-derived leucapheresis products (P < 0.0001 and P=0.0001). Finally, addition of a centrifugation and washing step to a group of 11 leucapheresis samples lysed with Quicklysis showed that they did not significantly affect the overall number of total CD34+, CD34+/CD19- and CD34+/CD19+ HPC obtained. In line with these findings elimination of centrifugation and washing steps when FACS Lysing Solution was used to lyse mature red cells almost corrected for the selective loss of CD34+ HPC. In spite of these differences a significant degree of correlation (r > 0.83 in all cases) was found between both methods regarding the total number of CD34+, CD34+/CD19- and CD34+/CD19+ HPC present in the BM, PB and PB-derived leucapheresis samples analyzed in this study.  相似文献   

16.
BACKGROUND: Mobilized peripheral blood progenitor cells (PBPCs) have increasingly been used to replace autologous bone marrow to allow faster hematopoietic reconstitution after myeloablative therapy in various malignancies. There is a paucity of data concerning factors that affect the total yield of three tandem leukaphereses. METHODS: Factors affecting the yield of PBPCs were analyzed in a series of 121 consecutive patients including 36 with non-Hodgkin's lymphoma, two with Hodgkin's disease, four with multiple myeloma, 44 with acute leukemia, 20 with breast cancer and 15 with other solid tumors. PBPCs were mobilized using granulocyte-colony-stimulating factor (G-CSF) alone (group I, n = 15), or after conventional-dose (group II, n = 70) or high-dose (group III, n = 36) chemotherapy followed by G-CSF. The total yield of three tandem PBPC collections for each patient was assessed by the number of mononuclear cells (MNCs), CD34+ cells and colony-forming units of granulocyte macrophages (CFU-GM). The factors evaluated included age, sex, diagnosis, history of marrow involvement, previous radiotherapy, the number of prior chemotherapy cycles and mobilization method. The two -sample t-test and logistic regression analysis were performed for univariate and multivariate analysis, respectively. RESULTS: With univariate analysis, a diagnosis of acute leukemia, positive history of bone marrow involvement, more chemotherapy cycles and mobilization with high-dose chemotherapy adversely affected the yields of CD34+ cells. By multivariate analysis, Group II had higher yields of MNCs (p = 0.039), CFU-GM (p = 0.002) and CD34+ cells (p = 0.011) than Group III. Fewer cycles of prior chemotherapy is the common favorable factor for the yields of both CD34+ cells (p = 0.016) and CFU-GM (p = 0.017). CONCLUSIONS: The number of prior chemotherapy cycles adversely affects progenitor cell yield. Conventional-dose chemotherapy followed by G-CSF seems to be the mobilization methods of choice for heavily pretreated cancer patients with limited bone marrow reserve. PBPCs should be harvested early, when the tumor burden is less, to avoid cumulative marrow toxicity from chemotherapy.  相似文献   

17.
Gene therapy is becoming one of the most promising modalities for the treatment of acquired immunodeficiency syndrome. The purpose of this study was to investigate the mobilization and collection of peripheral blood progenitor cells from human immunodeficiency virus (HIV)-infected individuals using granulocyte colony-stimulating factor (G-CSF). A total of 10 patients (9 male, 1 female; median age 36.5 years) with varying circulating CD4+ cell counts (13.9-1467/microL) were administered 10 microg/kg G-CSF daily for 6 days. Peripheral white blood cells (WBCs), CD34+ cell counts, lymphocyte subsets, and plasma viremia were monitored before each G-CSF injection. An average sixfold increase in WBCs was observed, which stabilized on day 4 or thereafter. The level of CD34+ cells was increased by 20-fold, and did not differ between days 5 and 6. Smaller increases in CD4+, CD8+, and CD4+CD8+ cells were observed. HIV viral load, as measured by RNA copy number in plasma, was not significantly altered by G-CSF administration. The leukapheresis product (LP), collected on day 7, contained an average of 6.25+/-4.52 (mean +/- standard deviation) x 10(10) WBCs and 3.08+/-2.98 x 10(6) CD34+ cells/kg. The levels of different CD34+ cell subsets were similar to those in the LPs of G-CSF-mobilized healthy individuals from an earlier study. Primitive hematopoietic cells (CD38- and CD38-HLA-DR+ cells) were detected in LPs (1.19+/-0.46% and 0.87+/-0.23%, respectively, of CD34+ cells). All parameters (WBC counts, lymphocyte populations, CD34+ cells, and HIV-1 RNA copies) measured 3 weeks after leukapheresis returned to baseline values. The administration of G-CSF was well tolerated by the HIV patients; side effects included bone pain, headache, flulike symptoms, and fatigue. There were no correlations between baseline CD4+ cell count and the WBCs, mononuclear cells, or CD34+ cells collected in the LP. Similarly, no correlation existed between baseline CD4+ and CD34+ cells, peak CD34+ cells, or days to achieve peak CD34+ cell counts after G-CSF mobilization. Our results showed that: (1) maximal mobilization can be achieved after 4 days of G-CSF administration; (2) therapeutic quantities of hematopoietic cells can be collected and used for gene therapy; and (3) G-CSF administration is well tolerated and does not cause a clinically significant increase in viremia.  相似文献   

18.
We have developed a long-term culture system using the murine bone marrow stromal cells MS-5 to support the growth of progenitor B cells with CD34-, CD10+, CD19+, and cytoplasmic mu chain (C mu)-negative surface phenotype from human CD34+ cells purified from umbilical cord blood (CB). When 10(3) CD34+ cells/well were seeded on MS-5 stromal cells at the beginning of culture in the absence of exogenously added cytokines, progenitor B cells first appeared after 14 days, and the maximal cell production was achieved during the 6th week of culture. Intriguingly, the addition of recombinant human stem cell factor (rhSCF) and granulocyte colony-stimulating factor (rhG-CSF), but not rhIL-7, strikingly enhanced the growth of progenitor B cells from CB CD34+ population cultured on MS-5 stromal cells. The culture of progenitor B cells could be maintained until the 6th week of culture when some cells were revealed to have a C mu phenotype, and a small number of cells had immunoglobulin mu chain on their cell surface in the presence of both rhSCF and rhG-CSF. When CD34+ cells were cultured physically separated from the stromal layer by membrane, supportive effects of MS-5 stromal cells for the growth of progenitor B cells were not observed. These results suggest that the present culture system could generate progenitor B cells to proliferate from CB CD34+ cells, that some of these progenitor B cells could differentiate into immature B cells in conjunction with rhSCF and rhG-CSF, and that a species-cross-reactive membrane-bound factor(s), which stimulates early human B lymphopoiesis, may exist in MS-5 stromal cells. Further studies are required to investigate the mechanism how rhG-CSF acts on progenitor B cells to allow their proliferation and differentiation.  相似文献   

19.
In a case control study, serum levels of thrombopoietin (TPO) were determined by a sandwich ELISA in 20 patients (median age, 7 years; range, 2-56 years) with various malignancies who received high-dose chemotherapy and a stem cell rescue operation. The patients received two different transplant modalities: (a) 12 patients received purified autologous peripheral blood CD34+ cells; and (b) 8 patients received cells in the CD34(-) fraction, which still contains many CD34+ cells. No significant differences were observed between the two groups with regard to the duration required to achieve an absolute granulocyte count of >0.5 x 10(9)/liter, the duration of dependence on platelet transfusion, or the number of platelet transfusions. In both groups, the serum TPO levels were inversely correlated with the circulating platelet count. Multivariate analysis demonstrated that significant determinants of the serum TPO level included the circulating platelet count (standardized regression coefficient = -0.5179), transplantation with cells in the CD34(-) fraction (0.2414), solid tumor (0.1420), and the age of the patient (-0.1236; r2 = 0.3021; P < 0.0001). These results suggest that the mode of stem cell support (ie., the presence of accessory cells in the inoculum), age, or the type of preceding chemotherapy affects serum TPO levels after transplantation.  相似文献   

20.
There is increasing interest in both standardization and simplification of methods for enumeration of CD34+ hematopoietic progenitor cells (HPC) to facilitate cellular therapies and to improve interinstitutional comparison of clinical and laboratory results. We evaluated a novel method for CD34+ cell enumeration based on microvolume fluorimetry (MVF) compared with our laboratory's routine flow cytometric method on samples of peripheral blood and leukapheresis products. The MVF method is semiautomated and uses a 633-nm light from a helium-neon laser to scan fluorochrome-labeled cells held in stasis in a capillary known volume. The performance of the MVF assay for enumeration of CD34+ cells was found to be comparable to our routine flow cytometric assay in linearity and accuracy in the range of 5-1500 cells per microliter. Precision of MVF for replicate assays on the same instrument was demonstrated by coefficient of variation (CV) values of 8.4% at a CD34+ cell concentration of 284/microliters for a sample volume of 0.8 microliters, and 15.7% at 12/microliters for a sample volume of 3.2 microliter. Precision among three different instruments was demonstrated, using sample volumes of 1.6 microliters, by CV values of 44% at 6 cells/microliters and 4.6% at 733 cells/microliters. In a field sample evaluation, precision of the entire assay system for paired measurements on 0.8-microliter sample volumes was demonstrated by CV values of 50%, 31%, and 15% for peripheral blood samples with concentrations of 0-10, 10-20, and 20-100 CD34+ cells/microliters, respectively, and 6.3%, 8.1% and 6.5% for leukapheresis samples with concentrations of 0-100, 100-1,000, and 1,000-2,500 CD34+ cells/microliters, respectively. The MVF assay was easy to perform, required minimal technical training time, and had a turnaround time of 40 min, of which less than 10 min was actual technical time. These observations suggest that the MVF method for CD34+ cell enumeration may prove useful to clinical laboratories providing support for HPC collection, processing, and transplantation services that require relatively simple, rapid assays for product quality control or to guide real-time clinical decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号