首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
障碍物形状对瓦斯爆炸影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
文章利用水平管道式气体--粉尘爆炸实验装置,研究了障碍物形状对瓦斯爆炸火焰传播速度、最大爆炸压力及爆炸压力上升速率的影响.结果表明:障碍物的存在极大的提高了瓦斯的火焰传播速度、最大爆炸压力及压力上升速率;障碍物的形状整体上对最大爆炸压力影响不大,对火焰速度和爆炸压力上升速率影响较大,其中,条型障碍物的影响最为明显,半圆型次之,圆环型影响最小.  相似文献   

2.
模拟煤矿巷道内瓦斯爆炸特性的试验研究   总被引:2,自引:1,他引:1  
针对近年来煤矿瓦斯爆炸事故频发的情况,利用不同长度的水平管道来模拟煤矿巷道瓦斯爆炸,研究瓦斯的爆炸极限、最大爆炸压力及其浓度、最大爆炸压力上升速率等爆炸特性,同时分析了瓦斯爆炸压力在管道内的变化情况,为预防煤矿巷道内的瓦斯爆炸提供理论依据.  相似文献   

3.
为研究不同湍流环境下,煤尘对甲烷爆炸特性的影响,基于20 L爆炸球采用0、25、50、100、200 g/m^3的煤尘分别与6.5%、9.5%、12%的甲烷在点火延迟时间60 ms和120 ms的条件下进行混合爆炸实验。结果表明:点火延迟时间的增大对单相甲烷爆炸最大爆炸压力影响较小,显著降低最大压力上升速率;有煤尘参与时,3种甲烷浓度下,点火延迟时间的提高能够降低最大爆炸压力和最大压力上升速率,当甲烷浓度为9.5%时,2种点火延迟时间下,对应的最佳煤尘浓度不同,点火延迟时间越小,最佳煤尘浓度越小,甲烷浓度为12%时,点火延迟时间为60 ms时,最大爆炸压力和最大压力上升速率对高浓度煤尘比较敏感,火延迟时间为120 ms时,最大爆炸压力和最大压力上升速率对低浓度煤尘较为敏感。  相似文献   

4.
受限空间可燃性气体爆炸特性的对比   总被引:2,自引:0,他引:2       下载免费PDF全文
以可燃性气体CH4为研究对象,在实验室对比研究了容器因素、初始湍流对CH4爆炸极限的影响,气体浓度及湍流对CH4爆炸特性的影响.实验结果表明:CH4爆炸极限与诸多因素有关,随容器扩展性的增大,爆炸极限会增宽;初始湍流亦使CH4爆炸极限增宽;CH4爆炸的最佳浓度为11%,在此浓度下CH4爆炸的最大爆炸压力、最大压力上升速率达最大值,到达最大爆炸压力的时间达最小值;在同一浓度下,CH4预混湍流爆炸比静止无湍流爆炸时的最大爆炸压力、最大压力上升速率大,到达最大爆炸压力的时间短.  相似文献   

5.
在水平管道式气体爆炸装置中,选取5种不同浓度的甲烷进行爆炸实验,研究在甲烷爆炸传播过程中,最大爆炸压力、压力上升速率及压力峰值时间随甲烷浓度及传播距离的变化规律。研究结果表明:甲烷浓度对最大爆炸压力、压力上升速率和压力峰值时间的影响显著:甲烷浓度越接近化学当量浓度,最大爆炸压力和压力上升速率越大,压力峰值时间越短。随着传播距离的增大,最大爆炸压力和压力上升速率先增大再减小,压力峰值时间则依次延长。甲烷浓度偏离化学当量浓度越多,压力峰值时间成倍延长。  相似文献   

6.
对内径68 mm,长1 200 mm的密闭管内甲烷爆炸的细水雾抑制效果进行了实验研究,分析了不同喷雾量对瓦斯爆炸最大爆炸压力及最大压力上升速率的影响。实验结果表明,喷雾量较小时,瓦斯爆炸的最大爆炸压力及最大压力上升速率都出现增大,达到压力峰值的时间缩短。随着喷雾量的增加,最大爆炸压力及最大压力上升速率会随着下降,达压力峰值的时间延长。这表明细水雾的喷雾量较大时,对瓦斯爆炸的抑制作用比较明显。  相似文献   

7.
文虎  王秋红  邓军  罗振敏 《煤炭学报》2009,34(11):1479-1482
采用20 L的球形不锈钢爆炸罐试验系统,考察不同浓度Al(OH)3超细粉体抑制瓦斯爆炸的效果.实验结果表明,随着Al(OH)3粉体浓度的增加,甲烷最大爆炸压力先减小后增大,即存在控制瓦斯爆炸的最佳的粉体浓度.当甲烷浓度为9.5%时,1.3 μm超细粉体Al(OH)3的最佳控爆浓度约为250 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.583 MPa,9.082 MPa/s,190 ms;当甲烷浓度为7.0%时的最佳控爆浓度约为200 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.474 MPa,3.76 MPa/s,400 ms.  相似文献   

8.
为寻找既环保又能抑制瓦斯爆炸的气体抑爆介质,解决瓦斯输送过程中的爆炸安全问题,分析了七氟丙烷作为抑爆介质的抑爆机理,并采用20 L爆炸特性测试系统,研究了不同体积分数的七氟丙烷对甲烷体积分数为9.5%的甲烷空气预混气体最大爆炸压力、最大压力上升速率和峰值压力的影响。研究发现:在实验条件下,点火延迟时间为60 ms时,七氟丙烷抑制甲烷空气预混气体爆炸的最低体积分数为17.4%;七氟丙烷体积分数为5%~17%时,随着其体积分数的增大,最大爆炸压力逐渐升高,最大压力上升速率增大,对甲烷空气预混气体爆炸有促进作用。研究表明,七氟丙烷可作为新型环保气体抑爆介质抑制瓦斯爆炸,但在使用过程中应根据使用场所合理确定七氟丙烷的用量。  相似文献   

9.
为研究隔爆外壳内预混气体燃爆最大爆炸压力和最大压力上升速率变化规律,选取了3种不同的隔爆外壳作为试验样品,通过在隔爆外壳内充入预混可燃气体进行爆炸试验,分析了最大爆炸压力和最大压力上升速率与隔爆外壳长径比、结构的关系;为揭示试验中的压力重叠现象,采用数值模拟的方法分析了其机理。结果表明:隔爆外壳的最大爆炸压力与腔体的长径比呈负非线性关系,最大爆炸压力受腔体表面积的影响更大,最大爆炸压力上升速率随长径比的增大而减小;双腔连通结构的隔爆外壳极易发生压力重叠下,压力重叠下点火位置对隔爆外壳最大爆炸压力和最大爆炸压力上升速率有明显的影响;氢气作为试验气体产生的最大压力上升速率比乙烯有显著的增加。  相似文献   

10.
为了进一步探究不同煤种参与的瓦斯煤尘爆炸的传播规律,选取3种具有代表性的煤尘在自制的半封闭管道内进行试验,主要研究了瓦斯煤尘爆炸火焰传播速度、火焰面发光强度和最大爆炸压力。研究结果表明:瓦斯煤尘爆炸的最大爆炸压力和火焰传播速度皆随着煤尘浓度的增加呈先上升后下降的趋势;存在着一个最佳的瓦斯浓度和煤尘浓度,使火焰传播速度达到最大,发光强度也达到最大;火焰传播速度、最大爆炸压力和爆炸产生的发光强度都是按褐煤、烟煤、无烟煤依次降低。  相似文献   

11.
为研究独头巷道中不同瓦斯源对其爆炸过程的影响,运用数值仿真技术系统模拟不同瓦斯积聚长度及浓度对其爆炸特性的影响。结果表明:随着瓦斯积聚长度的增大,最大爆炸压力和最高爆炸温度均增大;最强压力波破坏的区段由巷道封闭端向开放端转移。瓦斯浓度在6%~10%范围内,最大爆炸压力随浓度的增大而增大;浓度超过10%后,最大爆炸压力随浓度的增大而减小;最高爆炸温度则一直随浓度在增大;反向稀疏波与正向冲击波多次相遇叠加而出现多个压力峰值。  相似文献   

12.
为研究含弱约束受限空间内甲烷爆炸压力升高及沿扩散管的传播特征,对不同体积分数甲烷的爆炸特征参数进行了系列实验。获得了含弱约束结构受限空间在不同浓度甲烷爆炸时的压力升高规律,研究表明,含弱约束受限空间内的甲烷爆炸压力升高趋势类似封闭空间,但压力峰值远小于封闭空间,封闭空间最大压力是含弱约束结构空间的3.2倍。由于若约束结构的存在,甲烷体积分数较低时破膜压力较大,腔体内高压持续时间较短,而接近爆炸当量浓度时腔体内高压持续时间增长。扩散管中的爆炸压力和火焰传播规律随甲烷体积分数变化呈现明显不同。在实验条件下,当甲烷体积分数低于7.0%时,破膜激波与火焰锋面时间差最大为5.255 ms,扩散管中的火焰主要为膨胀火焰。而甲烷体积分数高于7.4%时,破膜激波与火焰锋面时间差为28~40 ms,说明在管外发生了二次爆炸,以湍流火焰为主。爆炸压力的沿管道传播则分为3种情况,甲烷体积分数低于7.0%时,爆炸压力随传播距离增大而减小;甲烷体积分数为7.4%和11.0%时,爆炸压力随传播距离增大呈线性增大;甲烷浓度为当量浓度时,其压力传播特征类似于全管道甲烷爆炸的特征,随传播距离呈现锯齿形增大。实验结论对天然气长输管道、LNG和CNG储罐检修过程中的爆炸事故预防和含弱约束结构的其他气体泄爆具有参考意义。  相似文献   

13.
This paper utilises FLUENT software to simulate the spraying and explosion of coal dust in a spherical explosion chamber. The influence of particle size on coal dust spraying is analysed. Explosion easily develops for small particle sizes under the same conditions of coal dust concentration and ignition temperature. For large-size coal dust particles, the speeds of release and transmission reduce dramatically due to lack of oxygen inside. Explosion is very difficult to develop in such conditions. Coal dusts with smaller particle size distribute uniformly in the chamber, whereas larger particles concentrate in parts of the chamber. The influence of coal dust concentration, ignition temperature and particle size on the pressure of coal dust explosion is also studied. The results show that, when ignition temperature is less than a certain value, the maximum pressure increases rapidly with the growth of ignition temperature. As ignition temperature is larger than the value, the change of the maximum pressure is small. The maximum explosion pressure increases first and then decreases with the increase of coal dust concentration. Because the inside of large size particles burn only partially due to lack of oxygen and slow combustion heat release and transfer, the decrease of the maximum explosion pressure is proportional with the increase of particle size.  相似文献   

14.
为有效地预防及控制矿井下煤自燃过程中产生的常见可燃气体对甲烷爆炸所造成的后果,利用FLACS软件模拟研究了5种初始温度(25、60、100、140、180℃)下C2H4、C2H6、H2和CO这4种气体按不同比例混合后对甲烷最大爆炸压力和最大爆炸温度的影响。研究表明:在定容常压下,随初始温度的增加,与任意多元气体混合后的甲烷,其最大爆炸温度呈上升趋势,最大爆炸压力则呈下降的趋势。随4种可燃气体的混合体积分数从0.4%增加到2.0%,甲烷最大爆炸温度和最大爆炸压力上升且初始温度较低时升幅更大。  相似文献   

15.
梁国栋 《现代矿业》2019,35(9):211-213
为研究2种气体状态下的瓦斯爆炸极限附近的瓦斯爆炸压力规律,运用20 L爆炸特性测试系统,对不同瓦斯浓度下瓦斯爆炸压力变化进行记录,绘图,从而直观性分析瓦斯爆炸压力规律及确定瓦斯爆炸极限范围。研究得出了2种气体状态下瓦斯爆炸上下限的瓦斯浓度范围,确定了瓦斯爆炸极限。同时,还得出在浓度相差不大的瓦斯爆炸压力的大体趋势为,在静止状态下点火后瓦斯爆炸压力随时间增长缓慢增长,而湍流状态下点火后瓦斯爆炸压力增长较为迅速。  相似文献   

16.
瓦斯煤尘复合爆炸严重影响了煤矿的安全生产,造成了大量的生产损失与人员伤亡。研发能应用在煤矿中高湿低温等复杂环境中的抑爆剂成为了研究的难点与热点。为研发出新型改性高岭土瓦斯煤尘抑爆剂,通过插层改性的方法制备了3种改性高岭土抑爆剂,采用热重分析、扫描电镜和红外光谱分析对样品的热稳定性、表面结构以及官能团变化进行了研究。选用重庆南桐煤样,通过标准筛对煤样进行筛分,通过粒径扫描与扫描电镜观测了煤粉的粒径分布与表面形貌。使用20 L球型爆炸系统对抑制剂抑制瓦斯煤尘爆炸的特性进行了研究,探究改性后高岭土对爆炸最大压力、最大压力上升速率及爆炸峰值时间等爆炸特征参数的影响;基于粉体表征结果及抑爆数据对改性高岭土抑制作用下的瓦斯煤尘爆炸的抑爆机理进行了分析。结果表明:改性高岭土抑爆剂兼具高岭土及插层粒子的双重抑爆效果,改善了高岭土的团聚现象,同时氨基磺酸铵粒子提升了高岭土的热解与抑爆性能。对瓦斯煤尘复合爆炸的抑制性能明显优于改性前粉体,且抑爆效果随着抑制剂质量浓度增加而增大,存在临界质量浓度,试验表明,当改性高岭土与煤尘比例为2∶3,且质量浓度为0.175 g/L时,最大爆炸压力的降幅达到了32.6%,爆炸峰值时间延缓了0.45 s,展现出最佳的抑爆效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号