首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical behavior, such as tensile and fatigue strength, of the optical fiber sensor embedded within the composite laminate was investigated. Tensile and fatigue tests were performed to evaluate the static and fatigue characteristics of optical fibers embedded within three types of laminated composite specimens, [06/OF/06]T, [02/904/OF/904/02]T and [03/903/OF/903/03]T. The initiation of damage and fracture of the optical fiber were detected by observation of the intensity drop-off of laser signal transmitted through the optical fiber during test. Experimental results showed that the fatigue strength of optical fiber embedded within the cross-ply laminate is much lower than the fatigue strength of optical fiber within the unidirectional ply laminate. It was also found that the optical fiber embedded within unidirectional ply laminate fractured due to the fatigue damage accumulation of internal defects of optical fiber itself. However the optical fiber embedded within the cross-ply laminate fractured due to the growth of transverse matrix crack of host composite laminate.  相似文献   

2.
Fatigue response of APC-2 composite laminates at elevated temperatures   总被引:1,自引:0,他引:1  
The response of thermoplastic AS-4/PEEK composite laminates of two lay-ups, such as cross-ply and quasi-isotropy, subjected to tension–tension (T–T) fatigue loading at elevated temperatures was investigated. It is found that the ultimate strength of cross-ply laminate is higher than that of quasi-isotropic laminate at various temperatures, so does the fatigue strength. However, the slope of normalized stress vs. cycles curves in the quasi-isotropic laminates is higher than that of the cross-ply laminates at elevated temperatures. Finally, the simple semi-empirical predictive models in statistical analysis and multiple regressions are proposed and provided for design and application purposes.  相似文献   

3.
开孔层合板的强度预报往往取决于孔边的临界长度,它不仅与材料性能,而且与铺层、孔径都有关。本文基于线弹性断裂力学,提出了一种预报对称铺层层合板开孔拉伸强度的新方法,只需提供正交层合板的断裂韧性和无缺口层合板的拉伸强度,显著降低对实验数据的依赖性。首先,将临界长度表作为层合板断裂韧性和无缺口拉伸强度的函数,再通过正交层合板[90/0]8s的紧凑拉伸试验和虚拟裂纹闭合技术,确定出0°层断裂韧性,进而计算得到任意对称铺层层合板的断裂韧性。本文测试了T300/7901层合板[0/±45/90]2s和[0/±30/±60/90]s的开孔拉伸强度,孔径分别为3 mm、6 mm和9 mm。理论预报结果与试验值吻合较好,最大误差为15.2%,满足工程应用需求。   相似文献   

4.
Damage development during quasistatic tensile loading of several laminates of graphite/epoxy material is examined and compared to damage development in laminates of a similar graphite/epoxy material subjected to tension-tension fatigue loading. Emphasis is placed upon following damage development at the microstructural level. Evidence of the important role of off-axis ply cracks in localizing and controlling fiber fracture in adjacent load-bearing plies for both loading modes is resented. The relationship between fiber fracture density and static load level is presented for tensile loading of unidirectional and cross-ply laminates by direct observation of fiber fracture in situ. The frequencies of occurrence of multiple adjacent fiber fractures are also reported. The cross-ply laminate results are compared with those from fatigue testing. Significant differences are described and discussed.  相似文献   

5.
复合材料层合板缺口强度的CDM三维数值模型   总被引:1,自引:0,他引:1       下载免费PDF全文
李秋漳  姚卫星  陈方 《复合材料学报》2016,33(12):2766-2774
针对复合材料层合结构缺口强度问题,基于连续损伤力学(CDM)提出了一种三维损伤数值模型。模型区分了层内损伤(纤维失效、纤维间失效)和层间分层损伤的不同失效模式。采用三维Puck准则与Aymerich准则对上述2类损伤进行判定,材料失效后基于CDM中线性软化模型对材料损伤进行演化。模型考虑了复合材料层合板子层的就位效应和剪切非线性行为。对Carlsson的AS4/3501-6缺口拉伸强度试验进行数值模拟。结果表明:分析结果与试验结果吻合良好,证明了该模型能够准确地预测含缺口复合材料层合板面内拉伸强度。   相似文献   

6.
基于剪滞理论, 建立了一种计及界面损伤的分层剪滞模型, 分析了含割口的正交叠层板在拉伸荷载作用下的应力重新分布问题, 据此可求得界面损伤区长度和割口前缘完整纤维的应力集中因子。在此基础上,采用细观统计破坏理论, 研究了割口正交叠层板的拉伸破坏机理和强度, 定量获得了残余拉伸强度与界面剪切强度的关系, 所得结果与现有实验吻合较好。结果表明, 应力集中和强度与割口长度及界面剪切强度有关; 适宜的界面黏结, 具有较高的残余拉伸强度。   相似文献   

7.
Fibre metal laminates (FMLs) are being used to manufacture many structural components in aerospace industry because of their very high strength to weight ratios, yet the exact model for estimating fatigue crack propagation in FMLs cannot be developed because of many variable parameters affecting it. In this research, tensile strength, fatigue life and fracture toughness values of 2/1 configuration carbon reinforced aluminium laminate (CARALL), aramid reinforced aluminium laminate and glass laminate aluminium reinforced epoxy specimens have been investigated. Mechanical, chemical and electrochemical surface treatments were applied to AA 1050 face sheets to improve the adhesive properties of the laminates. The specimens were prepared using vacuum assisted resin transfer moulding technique and were cut to desired shapes. Fatigue tests were conducted on centre notched specimens according to ASTM Standard E399. Real time material data and properties of adhesive were used in definition of numerical simulation model to obtain the values of stress intensity factor at different crack lengths. It was observed that CARALL shows very superior tensile and fatigue strength because of stress distribution during failure. Numerical simulation model developed in this research accurately predicts fracture toughness of aramid reinforced aluminium laminate, CARALL and glass laminate aluminium reinforced epoxy with less than 2% error. An empirical analytical model using experimental data obtained during research was developed which accurately predicts the trend of FMLs fatigue life.  相似文献   

8.
The ultimate strength of composite laminates containing elliptical openings can be predicted reasonably well using two fracture models which utilize the first ply failure strength of the notched and corresponding unnotched laminates. These models have the capability to predict the fracture strength of anisotropic laminates with an opening of general construction and subjected to general in-plane loading. Although the characteristic lengths for the present models are determined empirically, it is found that the characteristic lengths for an elliptical opening of any aspect ratio can be expressed in a closed-form function. These parameters are determined using three (e.g., two circular holes and one crack) or more data points. The experimental result shows that the notched strength of the graphite/epoxy cross-ply laminate is quite sensitive to the opening aspect ratio.  相似文献   

9.
正交铺设陶瓷基复合材料单轴拉伸行为   总被引:2,自引:0,他引:2  
采用细观力学方法对正交铺设陶瓷基复合材料单轴拉伸应力-应变行为进行了研究。采用剪滞模型分析了复合材料出现损伤时的细观应力场。采用断裂力学方法、 临界基体应变能准则、 应变能释放率准则及Curtin统计模型4种单一失效模型确定了90°铺层横向裂纹间距、 0°铺层基体裂纹间距、 纤维/基体界面脱粘长度和纤维失效体积分数。将剪滞模型与4种单一损伤模型结合, 对各损伤阶段应力-应变曲线进行了模拟, 建立了复合材料强韧性预测模型。与室温下正交铺设陶瓷基复合材料单轴拉伸应力-应变曲线进行了对比, 各个损伤阶段的应力-应变、 失效强度及应变与试验数据吻合较好。分析了90°铺层横向断裂能、 0°铺层纤维/基体界面剪应力、 界面脱粘能、 纤维Weibull模量对复合材料损伤及拉伸应力-应变曲线的影响。   相似文献   

10.
An investigation was conducted on HY-80 steel to show how low-cycle fatigue life is influenced by imposition of various stresses prior to fatigue testing. One cycle of static prestress was imposed on each specimen at loads either above or below the yield strength of the material and fatigue testing was done at various levels of stresses. Tests were conducted on notched and tee-fillet welded beam specimens. The magnitude and type of residual stresses at the toe of tee-fillet welds were determined by a hole drilling technique. Experimental data show that residual stresses induced by prestressing can—according to their sign—influence fatigue life. It was observed in the notched beam tests that when stress cycling was performed at stress levels below the yield strength of the material, tensile prestress increased fatigue life and that the higher the prestress, the greater the increase in life. At stress levels above the yield strength, tensile prestress has little or no effect on fatigue life. Compressive prestresses were found to be detrimental to fatigue life regardless of the stress levels at which the fatigue tests were run. The effects of prestress on the tee-weldments were not delinated as clearly. Fatigue life was increased by tensile prestress but no adverse effects were observed for compressive prestress.  相似文献   

11.
为改善玻璃纤维增强聚苯硫醚(PPS)复合板材的力学性能,分别以柔性的玻璃纤维布和PPS非织造布作为增强体和基体,采用叠层热压成型法制备出刚性的复合板材,采用力学性能测试、XRD、PLM、SEM研究了热压温度、热压时间、玻璃纤维含量和处理玻璃纤维布的硅烷偶联剂种类对复合板材的力学性能、结晶度、结晶形态和微观形貌的影响。结果表明,在无硅烷偶联剂处理玻璃纤维布时,控制热压温度为320℃,热压时间为30 min,压力为30 MPa,玻璃纤维质量分数为50%,复合板材的拉伸强度和弯曲强度最佳,分别为286.0 MPa和175.0 MPa,缺口冲击强度达到61.6 MPa。使用硅烷偶联剂KH560处理玻璃纤维布,在最佳成型工艺条件下,复合板材力学性能改善最明显,其弯曲强度为394.9 MPa,弯曲模量为23.6 GPa,层间剪切强度为16.4 MPa,缺口冲击强度为81.0 MPa。通过优化实验条件和使用硅烷偶联剂处理玻璃纤维表面,复合板材的力学性能得到了明显提高。  相似文献   

12.
基于有限断裂力学方法建立了一种预测多向复合材料开孔板拉伸强度的通用和半经验模型。该模型同时采用基于应力形式的失效准则和基于能量形式的失效准则预测失效。模型仅需铺层弹性常数、无缺口层合板的强度以及0°铺层的断裂韧性等参数。基于线弹性断裂力学建立了多向复合材料层合板的断裂韧性与0°铺层断裂韧性之间的关系, 进而预测了任意铺层复合材料开孔板发生纤维主导拉伸失效时的强度。将模型预测结果与开孔板拉伸强度的试验数据进行了对比验证, 预测误差最大为9.7%, 与点应力和平均应力等方法的对比表明, 该模型的预测精度高于传统的特征长度方法。   相似文献   

13.
Fracture models to predict the strength of laminated composites having sharp notches demand the un-notched strength and the critical damage size ahead of the notch. The critical damage size, in general, depends on the material, geometry of the specimen and size of the sharp notch. The extraordinary success of a fracture model lies in its ability to combine a theoretical framework with experimentally measured quantities. Modifications are made in one of the stress-fracture criteria known as the point stress criterion for accurate prediction of notched tensile strength of composite laminates containing sharp notches. To examine the adequacy of these modifications, fracture data of central-sharp notched carbon/epoxy composite laminates with various lay-ups are considered. The notched strength estimates are found to be close to the test results. The modified point stress criterion is very simple and accurate in predicting the notched tensile strength of laminated composites.  相似文献   

14.
采用加载臂开槽的中心开孔等厚度十字形试样,实验研究了正交对称铺层碳纤维增强聚合物基复合材料(CFRP)层合板在双轴拉伸载荷作用下的力学行为,分析了3种双轴加载比对其拉伸强度和破坏行为的影响。研究表明:纤维被切断的铺层部分在拉伸作用下容易与其相邻铺层脱粘,导致层合板承载力下降;等双轴加载时,在孔边的被切断纤维与连续纤维间基体在横向拉伸和纵向剪切组合作用下首先开裂;非等双轴加载时,在垂直于快速拉伸方向的铺层中沿孔边应力集中处先出现基体裂纹;随着加载比的增大,快速拉伸方向的细观结构损伤随载荷的增大发展更快,刚度下降更快,破坏时主裂纹的扩展方向更趋于垂直于快速拉伸方向;强度包络线的分析表明快速拉伸方向的拉伸强度随加载比的增大呈缓慢增大的趋势。   相似文献   

15.
《Composites Part B》2001,32(4):371-377
The objective of this study was to investigate the effect of fibre–matrix interfacial adhesion on fatigue residual strength of polymer matrix composite laminates containing a circular hole. Composite laminates were manufactured using surface-treated and -untreated carbon fibres, and the interfacial adhesion was quantified by measuring the transverse flexural strength of the two material systems. Tensile–tensile cyclic fatigue experiments were conducted at three load levels. Residual strength of notched laminates, subjected to cyclic loading was then measured for the two composite systems. Damage mechanisms were analysed using C-scan and SEM fractography and correlated with notched residual strength.  相似文献   

16.
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.  相似文献   

17.
M. Kawai  Y. Arai 《Composites Part A》2009,40(12):1900-1910
Experimental and theoretical studies of the effects of notch size and fiber orientation on the off-axis notched strength of the fiber–metal laminate GLARE-3 have been conducted. The notched strength decreased with increasing notch size, regardless of the fiber orientation. The notch sensitivity in GLARE-3 was highest in the fiber direction, and it decreased with increasing fiber orientation angle to the lowest in the 45° direction. A new multiaxial criterion for the tensile failure of notched orthotropic fiber composites was developed from a phenomenological point of view. From the proposed multiaxial failure criterion, an anisotropic size effect law for predicting the off-axis notched strength of orthotropic composite laminates was derived. By comparison with the experimental results on GLARE-3, it was demonstrated that the anisotropic size effect law can accurately and efficiently predict the off-axis notched strength of GLARE-3, regardless of the notch size and fiber orientation.  相似文献   

18.
An impact fatigue study has been made for the first time on 63.5% glass fibre reinforced vinylester resin notched composites. The study was conducted in a pendulum type repeated impact apparatus especially designed and fabricated for determining single and repeated impact strengths. A well-defined impact fatigue (S-N) behaviour, having a progressive endurance below the threshold single cycle impact fracture stress with decreasing applied stress has been demonstrated. Fractographic analysis revealed fracture by primary debonding having fibre breakage and pullout at the tensile zone, but a shear fracture of fibre bundles at the compressive zone of the specimen. The residual strength, modulus and toughness showed retention of the properties at high impact stress levels up to 1000 impacts followed by a sharp drop. Cumulative residual stresses with each number of impacts not withstanding the static fatigue failure at long endurances have been ascribed for the composite failures under the repeated impact stresses.  相似文献   

19.
In this study, the residual stress relaxation behaviour occurring during low‐cycle fatigue in shot‐peened specimens with either a flat or a notched geometry has been studied. A representative low‐pressure steam turbine material, FV448, was used. The residual stress and strain hardening profiles caused by shot peening were measured experimentally and were then incorporated into a finite element model. By allowing for both effects of shot peening, the residual stress relaxation behaviour was successfully simulated using this model and correlated well with the experimental data. Although more modelling work may be required to simulate the interaction between shot peening effects and external loads in a range of notched geometries, the model predictions are consistent with the specimens tested in the current study. The novelty of this study lies in the development of such a modelling approach which can be used to effectively simulate the complex interaction between shot peening effects and external loads in notched regions. Compared with the un‐notched geometry, the notched geometry was found to be more effective in retaining the improvement in fatigue life resulting from shot peening, by restricting the compressive residual stress relaxation during fatigue loading.  相似文献   

20.
A two dimensional shear lag analysis of a cracked cross-ply composite laminate subjected to uniaxial loading, taking into account residual thermal stresses, has been developed. This analysis has led us to introduce a characteristic non-dimensional damage variable η, which is a function of the crack density, material properties, and lamina stacking sequence. This analysis has been applied to a CFRP composite material (T300/914). The use of the characteristic damage variable has led to phenomenological laws that allow accurate prediction of the number of fatigue cycles necessary for the initiation of the first matrix cracks, and the kinetics of this damage, up to the “saturation” stage, in any cross-ply laminate subjected to a uniaxial fatigue loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号