首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The effect of small additions of In, up to 1 wt.%, on the microstructure of the eutectic Sn–3.7 wt.%Ag–0.9 wt.%Zn solder was investigated. As observed by microstructural analysis, the increase of In content made β-Sn easy to form but suppressed the formation of the AgZn phase in the Sn–3.7Ag–0.9Zn solder. After annealing at 473 K for 20 and 50 h, the microstructure varied a lot in the morphology of the investigated Sn–Ag–Zn–In solder. The β-Sn dendrites grew coarser but dimmer accompanied with the segregation of the intermetallic compounds (IMCs) along their boundaries. Furthermore, the suppressed Ag–Zn IMCs formed in the Sn–3.7Ag–0.9Zn–1In solder. And the coarsening of the β-Sn dendrites and the growth of IMCs particles in the microstructure of the samples brought a significant softening during annealing of the investigated Sn–Ag–Zn–In alloys.  相似文献   

2.
The formation and the growth of the intermetallic compounds (IMCs) at the interface between the Sn–8Zn–3Bi–xAg (x = 0, 0.5, and 1 wt.%) lead-free solder alloys and Cu substrate soldered at 250 °C for different durations from 5 to 60 min were investigated. It was found that Cu5Zn8 and CuZn5 formed at Sn–8Zn–3Bi/Cu interface, and Cu5Zn8 and AgZn3 formed at the solder/Cu interface when the solder was added with Ag. The thickness of IMC layers in different solder/Cu systems increased with increasing the soldering time. And the growth of the IMCs was found to be mainly controlled by a diffusion mechanism. Additionally, the growth of the IMC layers decreased with increasing content of Ag in the soldering process.  相似文献   

3.
Zhang et al. recently reported about the formation of Ni4(Sn,Zn) in the interlayer of a Sn–Zn/Ni(P) solder joint. This phase is claimed to be based on the binary Ni4Sn phase. However, this phase as described in the literature by Mikulas and Thomassen, was ruled out for any existing phase diagram version. It could be proved that the diffraction pattern from Mikulas and Thomassen was composed of Ni and Ni3Sn low-temperature phase. Thus the interpretation of their X-ray diffraction results is incorrect and the phase “Ni4Sn” is an artefact. The indexing of Ni4(Sn,Zn) by Zhang et al. is based on this artefact and therefore is incorrect, too. Furthermore, Tai et al. investigated IMC formation in Sn–3Ag–0.5Cu/Ni–8Zn–8P joints and could not observe any interdiffusion of Zn as stated by Zhang et al.  相似文献   

4.
The influences of different Cr content to lead (Sn)–Zn solder were investigated. Sn–9Zn–xCr shows finer and more uniform microstructure than Sn–9Zn. Thermal gravimetric analysis (TGA) and Auger electron spectroscopy (AES) results show that adding Cr significantly improves the oxidation resistance of Sn–9Zn solder, and reduces the thickness of oxidation film of Sn–9Zn–xCr solder. When Cr content is 0.1%, the Sn–9Zn–0.1Cr solder have the best oxidation resistance. In addition, the effect of Cr addition on the wettability, melting point and mechanical properties of Sn–9Zn solder was discussed.  相似文献   

5.
This study assesses the reliability of eutectic Sn–Pb, Sn–1.0Ag–0.5Cu, Sn–3.0Ag–0.5Cu and Sn–4.0Ag–0.5Cu solder bumps on three different pad surface finishes (ENIG, electrolytic Ni/Au and Cu-OSP) with and without an aging treatment at 150 °C for 100 h. This study focused primarily on how the pad surface finish and solder alloy composition affects the reliability of solder joints using a high-speed ball pull test method. The fracture forces and failure mechanisms were also examined. The results showed that the electrolytic Ni/Au surface finish had the highest fracture forces for all four different solder alloys with and without the aging process.  相似文献   

6.
This work presents an investigation on the influence of thermal cycling of Cu–Sn3.5AgIn–Cu joints for various content of indium. Solders Sn–3.5Ag containing 0, 6.5 and 9 mass% In were prepared by rapid quenching of appropriate alloys. Joints Cu–solder–Cu were prepared in furnace at 280 °C and 1800 s. Thermal cycling was in the interval room temperature (RT)–150 °C up to 1000 cycles and in the interval RT–180 °C for 500 cycles. The shear strength of the joints with indium-free solder decreases with increasing number of cycles. On the contrary shear strength of joints with indium containing solders increases with increasing number of cycles. It is related with the thickness of Cu6Sn5 phase which makes the interface between Cu substrate and solder. In the first case the thickness of this phase is growing with increasing number of cycles, in the second case the amount of this phase is reducing with increasing the number of cycles due to the support of dissolution of copper from Cu6Sn5 phase into the Sn–Ag–In solder by indium. X-ray diffraction analysis of original solders as well as of uncycled and 1000 times cycled joints made with all three kinds of solders is given.  相似文献   

7.
The melt-spinning processes of binary Sn–10 wt.% Sb and ternary Sn–10 wt.% Sb–In were analyzed using X-ray diffractometer and differential thermal analysis (DTA). The results showed that supersaturated solid solution and new intermetallic compound In3Sn were produced during melt-spinning technique not found under equilibrium conditions. It is also found that a small amount of In addition significantly lowers the melting point of the Sn–10 wt.% Sb alloy and reduce the crystal size to ≈60 nm. Also, tin–antimony solder doped with In exhibits good mechanical properties, Vickers hardness and mechanical strength due to refined microstructure. This work was performed to study the influence of rapid solidification and indium addition on structure and properties of tin–antimony based alloys.  相似文献   

8.
The interfacial reactions of Sn–Zn based solders and a Sn–Ag–Cu solder have been compared with a eutectic Sn–Pb solder. During reflow soldering different types of intermetallic compounds (IMCs) are found at the interface. The morphologies of these IMCs are quite different for different solder compositions. As-reflowed, the growth rates of IMCs in the Sn–Zn based solder are higher than in the Sn–Ag–Cu and Sn–Pb solders. Different types of IMCs such as γ-Cu5Zn8, β-CuZn and a thin unknown Cu–Zn layer are formed in the Sn–Zn based solder but in the cases of Cu/Sn–Pb and Cu/Sn–Ag–Cu solder systems Cu6Sn5 IMC layers are formed at the interface. Cu6Sn5 and Cu3Sn interfacial IMCs are formed in the early stages of 10 min reflow due to the limited supply of Sn from the Sn–Pb solder. The spalling of Cu–Sn IMCs is observed only in the Sn–Ag–Cu solder. The size of Zn platelets is increased with an increase of reflow time for the Cu/Sn–Zn solder system. In the case of the Sn–Zn–Bi solder, there is no significant increase in the Zn-rich phases with extended reflow time. Also, Bi offers significant effects on the wetting, the growth rate of IMCs as well as on the size and distribution of Zn-rich phases in the β-Sn matrix. No Cu–Sn IMCs are found in the Sn–Zn based solder during 20 min reflow. The consumption of Cu by the solders are ranked as Sn–Zn–Bi > Sn–Ag–Cu > Sn–Zn > Sn–Pb. Despite the higher Cu-consumption rate, Bi-containing solder may be a promising candidate for a lead-free solder in modern electronic packaging taking into account its lower soldering temperature and material costs.  相似文献   

9.
Leaching behavior of heavy metal elements from Sn–3.5Ag–0.5Cu, Sn–9Zn, and Sn–37Pb solder alloys and their joints was investigated in typical H2SO4, NaCl and NaOH solutions. The leaching amount of Sn from solder joints was more than that from solder alloys and the leaching amount of Sn from Sn–3.5Ag–0.5Cu solder joint in the NaCl solution was the most. The surface corrosion products on the solder and their joints were composed of oxide, oxide hydroxide or oxychloride of the component element. Much more surface oxides for the samples treated in the NaCl solution produced than that in the NaOH and H2SO4 solutions.  相似文献   

10.
The simultaneous addition of Al and Ag to Zr–Cu binary alloys increased in the stabilization of supercooled liquid, the reduced glass transition temperature and γ value, leading to greatly enhance the glass-forming ability (GFA). The Zr–Cu–Ag–Al glassy alloy samples with diameters above 15 mm were obtained in the wide composition range of 42–50 at% Zr, 32–42 at% Cu, 5–10 at% Ag, and 5–12 at% Al. The best GFA was obtained for Zr48Cu36Ag8Al8 alloy, and the glassy samples with diameters up to 25 mm were fabricated by an injection copper mold casting. The Zr48Cu36Ag8Al8 glassy alloy exhibited high tensile and compressive fracture strength of over 1800 MPa.  相似文献   

11.
The dissolution process of nickel in liquid Pb-free 87.5% Sn–7.5% Bi–3% In–1% Zn–1% Sb and 80% Sn–15% Bi–3% In–1% Zn–1% Sb soldering alloys has been investigated by the rotating disc technique at 250–450 °C. The temperature dependence of the nickel solubility in soldering alloys obeys a relation of the Arrhenius type cs = 4.94 × 102 exp(−39500/RT)% for the former alloy and cs = 4.19 × 102 exp(−40200/RT)% for the latter, where R is in J mol−1 K−1 (8.314 J mol−1 K−1) and T is in K. Whereas the solubility values differ considerably, the dissolution rate constants are rather close for these alloys and fall in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. Appropriate diffusion coefficients vary from 0.16 × 10−9 to 2.02 × 10−9 m2 s−1. With both alloys, the Ni3Sn4 intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at dipping times of 300–2400 s. The other Ni–Sn intermetallic compounds are found to be missing. A simple mathematical equation is proposed to evaluate the Ni3Sn4 layer thickness in the case of undersaturated melts. The tensile strength of the nickel-to-alloy joints is 94–102 MPa, with the relative elongation being 2.0–2.5%.  相似文献   

12.
J.Y. Kim  Jin Yu  S.H. Kim 《Acta Materialia》2009,57(17):5001-5012
Ternary Pb-free solders, Sn–3.5Ag–X, containing 0.5 wt.% of Zn, Mn and Cr, were reacted with Cu UBM, which was electroplated using SPS additive. Characteristics of Cu–Sn IMCs and Kirkendall void formation at the Cu/Sn–3.5Ag solder joints were significantly affected by the third element, and the potency to suppress Kirkendall voids at the solder joint increased in the order of Cr, Mn, Zn, which was indeed the order of the drop reliability improvement. From the AES analyses, it was suggested that the sulfide-forming elements in the solder diffused into the Cu UBM and reduced the segregation of S atoms to the Cu/Cu3Sn interface by scavenging S, which led to the suppression of Kirkendall void nucleation at the Cu/Cu3Sn interface and the drop reliability improvement. In the case of the Zn-containing solder joint, Cu3Sn phase, known to be a host of Kirkendall voids, did not form at all even after extended aging treatments. The magnitude of the tensile stress at the Cu3Sn/Cu interface which drove the Kirkendall void growth was estimated to be 10–100 MPa.  相似文献   

13.
14.
The wettabilities of In–Sn alloy on Cu40Zr44Al8Ag8 BMG substrate were investigated using the sessile-drop method at different temperature. The result shows that the equilibrium contact angle decreased with increasing temperature. The interfacial reaction of the active Sn atoms in molten In–Sn alloy and the active Zr atoms in Cu40Zr44Al8Ag8 BMG caused crystallization reaction. Ion beam sputtering profiling in combination with AES technique was employed to investigate the Sn diffusion in Cu40Zr44Al8Ag8 BMG. Between 473 K and 673 K, the diffusion coefficients vary from 0.7 × 10−16 m2/s to 12.9 × 10−16 m2/s. It is concluded that the interfacial reaction is favorable to the crystallization and then the crystallization also promotes Sn diffusion.  相似文献   

15.
In this paper, the microstructural evolution of IMCs in Sn–3.5Ag–X (X = 0, 0.75Ni, 1.0Zn, 1.5In)/Cu solder joints and their growth mechanisms during liquid aging were investigated by microstructural observations and phase analysis. The results show that two-phase (Ni3Sn4 and Cu6Sn) IMC layers formed in Sn–3.5Ag–0.75Ni/Cu solder joints during their initial liquid aging stage (in the first 8 min). While after a long period of liquid aging, due to the phase transformation of the IMC layer (from Ni3Sn4 and Cu6Sn phases to a (Cu, Ni)6Sn5 phase), the rate of growth of the IMC layer in Sn–3.5Ag–0.75Ni/Cu solder joints decreased. The two Cu6Sn5 and Cu5Zn8 phases formed in Sn–3.5Ag–1.0Zn/Cu solder joints during the initial liquid aging stage and the rate of growth of the IMC layers is close to that of the IMC layer in Sn–3.5Ag/Cu solder joints. However, the phase transformation of the two phases into a Cu–Zn–Sn phase speeded up the growth of the IMC layer. The addition of In to Sn–3.5Ag solder alloy resulted in Cu6(Snx,In1?x)5 phase which speeded up the growth of the IMC layer in Sn–3.5Ag–1.5In/Cu solder joint.  相似文献   

16.
The kinetics of anodic dissolution of silver and Ag–Au alloys (XAu = 0.1–30 at.% Au) in aqueous alkaline solution under the conditions of the formation of silver oxides has been examined. The techniques of cyclic voltammetry, chronoammetry, and photopotential measurements have been used. It was established that the anodic formation and cathodic reduction of Ag2O on silver and alloys are controlled by migration in the oxide layer. Ag2O oxide is an n-type semiconductor with an excess of silver atoms. Oxide layers formed on monocrystalline Ag(1 1 1) and Ag(1 1 0) are more stoichiometric than the layer formed on polycrystalline Ag.  相似文献   

17.
The phase equilibria of the Ti–Sn–Y ternary system at 473 K have been investigated mainly by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). The existences of 10 binary compounds, Ti3Sn, Ti2Sn, Ti5Sn3, Ti6Sn5, Ti2Sn3, Sn3Y, Sn2Y, Sn10Y11, Sn4Y5 and Sn3Y5 were confirmed. The 473 K isothermal section was found to consist of 13 single-phase regions, 23 two-phase regions and 11 three-phase regions. There is no new ternary compound found in the work. None of the phases in this system reveals a remarkable homogeneity range at 473 K.  相似文献   

18.
Phase equilibria of the Au–Sn–Zn ternary system and interfacial reactions between Sn–Zn alloys and Au were experimentally investigated at 160 °C. Experimental results reveal that no equilibrium-stated ternary phases were found and the ternary element solubility in the binary phase is insignificant. When the Zn content was less than 3 wt% in the Sn–Zn alloy, only the Au–Sn binary intermetallic compounds (IMCs), such as AuSn, AuSn2 and AuSn4 phases, were formed at the Sn–Zn/Au interface. When the Zn content in Sn–Zn alloys was greater than 7 wt%, the AuZn, AuZn2 and Au3Zn7 phases were formed in the Sn–Zn/Au couples at 160 °C. However, both Sn–Zn and Au–Zn IMCs, and the Au–Zn–Sn ternary IMC (T phase) were observed between Au and the Sn–Zn alloys with 3–5 wt% added Zn. This T phase might be the metastable phase. The evolution of IMCs in the Sn–Zn/Au couples is very sensitive to the Zn content in Sn–Zn alloys.  相似文献   

19.
The present study details the microstructure evolution of the interfacial intermetallic compounds (IMCs) layer formed between the Sn-xAg-0.5Cu (x = 1, 3, and 4 wt.%) solder balls and electroless Ni-P layer, and their bond strength variation during aging. The interfacial IMCs layer in the as-reflowed specimens was only (Cu,Ni)6Sn5 for Sn-xAg-0.5Cu solders. The (Ni,Cu)3Sn4 IMCs layer formed when Sn-4Ag-0.5Cu and Sn-3Ag-0.5Cu solders were used as aging time increased. However, only (Cu,Ni)6Sn5 IMCs formed in Sn-1Ag-0.5Cu solders, when the aging time was extended beyond 1500 h. Two factors are expected to influence bond strength and fracture modes. One of the factors is that the interfacial (Ni,Cu)3Sn4 IMCs formed at the interface and the fact that fracture occurs along the interface. The other factor is Ag3Sn IMCs coarsening in the solder matrix, and fracture reveals the ductility of the solder balls. The above analysis indicates that during aging, the formation of interfacial (Ni,Cu)3Sn4 IMCs layers strongly influences the pull strength and the fracture behavior of a solder joint. This fact demonstrates that interfacial layers are key to understanding the changes in bonding strength. Additionally, comparison of the bond strength with various Sn-Ag-Cu lead-free solders for various Ag contents show that the Sn-1Ag-0.5Cu solder joint is not sensitive to extended aging time.  相似文献   

20.
The growth behavior of reaction-formed intermetallic compounds (IMCs) at Sn3.5Ag0.5Cu/Ni and Cu interfaces under thermal-shear cycling conditions was investigated. The results show that the morphology of (Cu x Ni1–x )6Sn5 and Cu6Sn5 IMCs formed both at Sn3.5Ag0.5Cu/Ni and Cu interfaces gradually changed from scallop-like to chunk-like, and different IMC thicknesses developed with increasing thermal-shear cycling time. Furthermore, Cu6Sn5 IMC growth rate at the Sn3.5Ag0.5Cu/Cu interface was higher than that of (Cu x Ni1–x )6Sn5 IMC under thermal-shear cycling. Compared to isothermal aging, thermal-shear cycling led to only one Cu6Sn5 layer at the interface between SnAgCu solder and Cu substrate after 720 cycles. Moreover, Ag3Sn IMC was dispersed uniformly in the solder after reflow. The planar Ag3Sn formed near the interface changed remarkably and merged together to large platelets with increasing cycles. The mechanism of formation of Cu6Sn5, (Cu x Ni1–x )6Sn5 and Ag3Sn IMCs during thermal-shear cycling process was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号