共查询到20条相似文献,搜索用时 78 毫秒
1.
利用溶胶-凝胶提拉方法在隔板玻璃表面涂制得到由TiO2与SiO2组成的λ/2-λ/4型宽光谱增透膜。通过溶胶粘度、凝胶时间及红外光谱等研究了TiO2涂膜溶胶的稳定性与相应膜层性能,测试了双层增透膜的透过率、抗高能氙灯辐照性能及使用性能等。结果表明,控制合适的原料配比、降低薄膜烘烤升温速率,可得到适于大面积涂膜的稳定TiO2溶胶,有效改善TiO2膜层质量;隔板玻璃表面增透膜在450-900nm光谱范围内平均透过率高达约98%,使“神光-Ⅱ”第九路主放大器的实际增益提高5.5%-6.5%且具有良好的抗高能氙灯辐照性能。 相似文献
2.
溶胶-凝胶法制备的二氧化硅增透膜因具有极低的折射率与较高的激光损伤阈值而被广泛应用于高功率激光系统中。但是, 激光系统工作环境中的水汽及挥发性有机污染物极易污染薄膜。本研究以正硅酸四乙酯为前驱体, 氨水为催化剂, 乙醇为溶剂制备了碱性催化的单分散SiO2溶胶。采用提拉法在BK7玻璃基板表面镀制了SiO2薄膜, 并对薄膜进行氨水气氛以及HTMS气氛联合处理改性。改性后的薄膜表现出了极佳的耐环境稳定性, 在高湿环境下放置2个月后膜层峰值透过率仅下降0.03%, 在低真空二甲基硅油污染环境下放置2个月后透过率光谱几乎无变化。NH3/HTMS气相法联合处理可以有效延长SiO2增透膜在高功率激光系统中的工作寿命。 相似文献
3.
通过溶胶-凝胶法制备了折射率连续可调的SiO2薄膜,并将其应用于制备双层宽频增透膜。以正硅酸乙酯为前驱体,分别以盐酸和氨水为催化剂制备酸催化SiO2溶胶和碱催化SiO2溶胶;将酸催化和碱催化的SiO2溶胶按不同比例进行混合制得酸碱混合SiO2溶胶,最后通过浸渍-提拉法在K9玻璃上制备SiO2薄膜。椭偏仪测试结果表明SiO2薄膜的折射率在1.18~1.44之间连续可调,折射率随着酸催化SiO2溶胶比例的增加而增加。分别以折射率为1.41和1.18的SiO2薄膜为底层和上层,成功制备出在527和1053nm处同时高增透的双层宽频增透膜。最后,以六甲基二硅氮烷为修饰剂,通过增透膜表面的有机修饰,提高了宽频增透膜的疏水性和耐环境性。 相似文献
4.
宽光谱监控法镀制高精度增透膜的研究 总被引:1,自引:0,他引:1
本文介绍了使用宽光谱监控系统镀制增透膜的基本原理和技术特点.给出了针对不同的膜层特性计算评价函数的方法,分别为能量法和特征点法,能量法适合膜层的光学特性对每一个波长点的权重要求都是一样的,特征点法适合于只对膜层光学特性的某几个特定波长的要求较高,并根据膜料光学参数的特性,分别设置权重因子,其它波长忽略不计.用工艺曲线代替理论设计曲线作为目标曲线,解决实际镀制的光谱特性与理论值存在偏差的问题,使评价函数的极小值趋近于零,达到最佳膜厚.这种简单而准确的方法对于提高宽带增透膜镀制精度和成品率有显著的效果,具有实际的应用价值. 相似文献
5.
疏水疏油二氧化硅增透膜的制备 总被引:3,自引:0,他引:3
以正硅酸乙酯为前驱体,氨水为催化剂,采用溶胶-凝胶法,结合全氟辛基癸烷三甲氧基硅烷(FAS)自组装对膜层表面改性,制备了疏水疏油二氧化硅增透膜.采用红外光谱仪,分光光度计,扫描探针显微镜,椭偏仪,静滴接触角测量仪,抗油污染能力测试等技术对膜层性质进行了分析.结果表明:疏水疏油增透膜的峰值透光率为99.8%;与水的接触角为118.0°,与二甲基硅油的接触角达到74.5°;在抗油污染能力测试中,疏水疏油增透膜的抗油污染能力较常规增透膜大大增强. 相似文献
6.
7.
以γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为改性剂,正硅酸乙酯(TEOS)为前驱体,盐酸(HCl)为催化剂,利用溶胶-凝胶法制备SiO2/KH560/KH570增透膜.研究了反应物配比对溶胶性能的影响,测试了薄膜的光学以及力学性能.结果表明,随着酸用量的增加,溶胶粘度增加,凝胶时间缩短;SiO2/KH560/KH570薄膜在波段350~800nm间平均透过率增加3%~4%,具有良好的增透效果,而且抗划伤能力强. 相似文献
8.
疏水型PA6/SiO2有机无机杂化材料的制备及性能 总被引:4,自引:0,他引:4
以正硅酸乙酯(TEOS)、甲基三乙氧基硅烷(MTES)和己内酰胺(CPL)为原料,采用原位阴离子开环聚合法,制备了疏水型PA6/SiO2有机无机杂化材料。PA6/SiO2有机无机杂化材料表面外的Si-CH3基团赋予了材料优异的疏水性能。随着硅溶胶含量(SiO2%,质量分数)的提高,接触角θ增大,当SiO2%大于8.5时,接触角θ增大不明显,并最终稳定在130°左右。红外图谱(FT-IR)和X射线光电子能谱(XPS)分析结果显示,硅溶胶的羟基和未完全水解的烷氧基能够与PA6的前驱体发生杂化反应。X射线衍射结果显示,采用本实验方法制备出的PA6和疏水型PA6/SiO2有机无机杂化材均为α晶型,而DSC结果表明,PA6/SiO2有机无机杂化材料的熔点略高于PA6。 相似文献
9.
10.
疏水型纳米SiO2增透薄膜的制备与性能研究 总被引:6,自引:0,他引:6
采用溶胶-凝胶技术,以正硅酸乙酯(TEOS)为有机醇盐前驱体,无水乙醇(EtOH)为溶剂,在碱催化体系中通过选择合适的原料的比例,制得碱性的增透膜,然后对所得的薄膜进行表面修饰,制得既有增透性质又有疏水性的增透膜,克服了增透膜防潮性能差的缺点.采用椭偏仪、傅立叶型红外分光光度计、UV-VIS-NIR分光光度计和接触角测试仪对膜的折射率、厚度、红外特性、透过光谱、接触角进行表征. 相似文献
11.
以正硅酸乙酯为前驱体, 氨水为催化剂制备标准SiO2溶胶, 然后在回流前后分别对普通SiO2溶胶添加适量的辛基三甲氧基硅烷(OTMS)进行修饰, 得到OTMS改性SiO2溶胶。用未进行OTMS修饰、回流前修饰和回流后修饰的溶胶分别制备减反膜, 并使用傅里叶变换红外光谱仪、核磁共振波谱仪、紫外-可见-近红外分光光度计、原子力显微镜和接触角测试仪对薄膜的结构和性能进行表征。结果表明: 回流前添加OTMS修饰剂制备的改性SiO2减反膜具有最优异的耐潮湿环境稳定性能, 最高透过率可达99.7%以上; 与水的接触角达到120°, 在潮湿环境中放置4 w后, 透过率只下降0.23%。 相似文献
12.
采用溶胶-凝胶法、分子模板法及旋转涂覆法在硅衬底上制备掺杂TiO2的SiO2薄膜,并采用差热分析(DSC-TGA)、红外吸收光谱(FTIR)、X射线衍射、小角衍射(SAXS)、原子力显微镜(AFM)、台阶仪(Atomic-Profiler)以及纸擦拭法(paper-wiping method)和胶带剥离法(adhesive tpe-stripping method)对薄膜的性能进行了分析与表征,结果表明,薄膜的最佳热处理温度为400℃,所制备的掺杂TiO2的SiO2薄膜为多孔结构的无定形态,具有较好的机械性能,平均孔径随着膜层的增加而减小,一层膜和两层膜的平均孔径分别为87.4nm和62.8nm,厚度分别为538.7nm和1032.3nm。 相似文献
13.
以正硅酸乙酯(TEOS)为硅源,采用溶胶-凝胶技术,通过两步酸法控制实验条件引入有机硅烷甲基三乙氧基硅烷(MTES)和表面活性剂十六烷基三甲基溴化氨(CTAB),制备了疏水型SiO2前驱体溶胶.以旋涂法成膜出SiO2-MTES-CTAB纳米疏水薄膜,研究了正硅酸乙酯与甲基三乙氧基硅烷不同的混合比以及不同的热处理温度等对纳米疏水薄膜的影响,并且分析了纳米疏水薄膜的表面形态.研究表明,利用有机基团甲基三乙氧基硅烷改性SiO2溶胶和薄膜的热处理温度对制备的SiO2基纳米疏水薄膜的性能以及表面形态都具有非常重要的影响. 相似文献
14.
15.
16.
以正硅酸乙酯(TEOS)为前驱体,采用溶胶-凝胶法制备SiO2气凝胶薄膜,并以不同体积分数的六甲基二硅胺烷(HMDZ)对SiO2气凝胶薄膜进行了疏水改性研究,采用椭偏仪、FITR、接触角测试仪、SEM和光谱仪等对薄膜的疏水性、微观结构及透光性进行了表征,研究了HMDZ疏水改性对SiO2气凝胶薄膜性能与结构的影响。结果表明,疏水改性后,SiO2胶粒表面的大部分亲水性-OH被疏水基团-CH3所取代,其与水的接触角达159°,疏水性好;SiO2气凝胶薄膜在可见光范围内透光率接近90%,透光性高;其孔隙率为78.8%,密度为0.464g/cm3,骨架颗粒尺寸小于40nm,具有纳米多孔网络结构特性。 相似文献
17.
以正硅酸乙酯(TEOS)和钛酸正丁酯(TBOT)为原料,采用溶胶-凝胶法制备了SiO2溶胶和TiO2溶胶,利用浸渍提拉法制备了SiO2/TiO2双层减反膜.用紫外-可见分光光度计(UV-Vis)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、椭圆偏振光谱仪和接触角测量仪等分析表征了薄膜的特性,以光催化降解甲基橙溶液实验来评价薄膜的自洁功能,考察了SiO2/TiO2双层减反膜的耐磨擦性.结果表明,SiO2/TiO2双层减反膜在400~800nm可见光波段的透光率最高可达97.2%,薄膜表面平整,结构致密且粗糙度小,经紫外灯照射后薄膜的水接触角接近0°,光催化2h后可将5mg/L的甲基橙溶液降解43.6%.SiO2/TiO2减反膜还具有优良的耐磨擦性能. 相似文献
18.
采用SiO2水溶胶(ACS)为硅源, H3PO4为桥联剂, H2O2为活化剂在玻璃表面成功制备了一种性能优异的新型减反膜。利用FTIR、XRD、FESEM、TEM、AFM对薄膜结构、形成机理及性能进行了研究, 结果表明, 在成胶过程中, H2O2的导入有效修复了SiO2胶粒的表面羟基, 提高了SiO2的反应活性; 而在焙烧过程中, H3PO4通过其自身脱水形成的偏磷酸链状体分别与SiO2胶粒及玻璃基底表面的Si-OH进行了脱羟基缩聚, 构架了坚固的Si-O-P网络交联, 最终形成了稳定的磷硅酸盐凝胶网络结构, 提高了成膜质量。当n(H3PO4) : n(H2O2) : n(EtOH) : n(SiO2)= 0.49: 0.52: 30: 1时, 制备的SiO2减反膜在可见光区平均透光率高达98%, 硬度可达6H。 相似文献
19.
20.
壳聚糖/纳米TiO2杂化材料的制备及抗菌性能表征 总被引:3,自引:0,他引:3
制备了壳聚糖/纳米TiO2杂化膜,表征了其抗菌性能,分析了影响TiO2纳米粒子在壳聚糖溶液中分散性的影响因素。FT-IR、AFM分析了杂化膜的结构与形态。表明促进TiO2颗粒良好分散有四个主要因素:(1)表面电荷的重新分布;(2)空间保护作用;(3)化学键的相互作用;(4)超声分散。抗菌实验表明壳聚糖/纳米TiO2杂化膜具有很强的抗菌性能,细菌的形态学变化具有两个显著的特点:(1)细胞内物质渗漏,在细胞周围形成了环状结构;(2)细胞表面囊泡的形成。 相似文献