首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning energy performance and indoor comfort requirements. To do so, a genetic optimization process considering an efficient approach to perform rule weight derivation and rule selection is developed. This allows the tuning of the system to be developed at the rule level. The proposed technique was tested considering a physical modelization of a real test site.  相似文献   

2.
Context adaptation is certainly a promising approach in the development of fuzzy rule based systems (FRBSs). First, an initial rule base is extracted from heuristic knowledge of the application domain. Meanings of linguistic terms are defined so as to guarantee high interpretability of the FRBSs. Then, meanings are adapted to a specific context through the use of operators that, using a set of known input–output patterns, appropriately modify the corresponding fuzzy sets. The choice of the specific operators and their parameters is context based and optimized so as to obtain a good interpretability–accuracy trade‐off. In this paper, we propose a set of operators that, starting from a given FRBS, adapt the FRBS to the specific context by adjusting the universes of the input and output variables, and modifying the core, the support and the shape of the fuzzy sets which compose the partitions of these universes. The operators are defined so as to preserve ordering of the linguistic terms, universality of rules, and interpretability of partitions. The choice of the parameters used in the operators is performed by a genetic optimization process aimed at maximizing the accuracy and preserving the interpretability of the FRBS. We finally describe the application of our context adaptation approach to two Mamdani fuzzy systems developed, respectively, for two different domains, namely, regression and data modeling. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
It is well known the fact that the design of a fuzzy control system is based on the human expert experience and control engineer knowledge regarding the controlled plant behavior. As a direct consequence, a fuzzy control system can be considered as belonging to the class of intelligent expert systems. The tuning procedure of a fuzzy controller represents a quite difficult and meticulous task, being based on prior data regarding good knowledge of the controlled plant. The complexity of the tuning procedure increases with the number of the fuzzy linguistic variables and, consequently, of the fuzzy inference rules and thus, the tuning process becomes more difficult. The paper presents a new design strategy for such expert fuzzy system, which improves their performance without increasing the number of fuzzy linguistic variables. The novelty consists in extending the classic structure of the fuzzy inference core with an intelligent module, which tunes one of the control singletons, providing a significant simplification of the design and implementation procedure. The proposed strategy implements a logical, not physical, supplementation of the linguistic terms associated to the controller output. Therefore, a fuzzy rules set with a reduced number of linguistic terms is used to implement the expert control system. This logical supplementation is based on an intelligent algorithm which performs a shifting of only one of the control singletons (the singleton associated to the SMALL_ linguistic variable), its value becoming variable, a fact that allows an accurate control and a better performance for the expert control system. The logic of this intelligent algorithm is to initially provide a high controller output, followed by a slowdown of the control signal near to the operating set point. The main advantage of the proposed expert control strategy is its simplicity: a reduced number of linguistic terms, combined with an intelligent tuning of a single parameter, can provide results as accurate as other more complex available solutions involving tuning of several parameters (well described by the technical literature). Also, a simplification of the preliminary off-line tuning procedure is performed by using a reduced set of fuzzy rules. The generality of the proposed expert control strategy allows its use for any other controlled process.  相似文献   

4.
Multiobjective genetic fuzzy rule selection is based on the generation of a set of candidate fuzzy classification rules using a preestablished granularity or multiple fuzzy partitions with different granularities for each attribute. Then, a multiobjective evolutionary algorithm is applied to perform fuzzy rule selection. Since using multiple granularities for the same attribute has been sometimes pointed out as to involve a potential interpretability loss, a mechanism to specify appropriate single granularities at the rule extraction stage has been proposed to avoid it but maintaining or even improving the classification performance. In this work, we perform a statistical study on this proposal and we extend it by combining the single granularity-based approach with a lateral tuning of the membership functions, i.e., complete contexts learning. In this way, we analyze in depth the importance of determining the appropriate contexts for learning fuzzy classifiers. To this end, we will compare the single granularity-based approach with the use of multiple granularities with and without tuning. The results show that the performance of the obtained classifiers can be even improved by obtaining the appropriate variable contexts, i.e., appropriate granularities and membership function parameters.  相似文献   

5.
In this study, an on-line tuning method is proposed for fuzzy PID controllers via rule weighing. The rule weighing mechanism is a fuzzy rule base with two inputs namely; “error” and “normalized acceleration”. Here, the normalized acceleration provides relative information on the fastness or slowness of the system response. In deriving the fuzzy rules of the weighing mechanism, the transient phase of the unit step response of the closed loop system is to be analyzed. For this purpose, this response is assumed to be divided into certain regions, depending on the number of membership functions defined for the error input of the fuzzy logic controller. Then, the relative importance or influence of the fired fuzzy rules is determined for each region of the transient phase of the unit step response of the closed loop system. The output of the fuzzy rule weighing mechanism is charged as the tuning variable of the rule weights; and, in this manner, an on-line self-tuning rule weight assignment is accomplished. The effectiveness of the proposed on-line weight adjustment method is demonstrated on linear and non-linear systems by simulations. Moreover, a real time application of this new method is accomplished on a pH neutralization process.  相似文献   

6.
7.
The most challenging problem in developing fuzzy rule-based classification systems is the construction of a fuzzy rule base for the target problem. In many practical applications, fuzzy sets that are of particular linguistic meanings, are often predefined by domain experts and required to be maintained in order to ensure interpretability of any subsequent inference results. However, learning fuzzy rules using fixed fuzzy quantity space without any qualification will restrict the accuracy of the resulting rules. Fortunately, adjusting the weights of fuzzy rules can help improve classification accuracy without degrading the interpretability. There have been different proposals for fuzzy rule weight tuning through the use of various heuristics with limited success. This paper proposes an alternative approach using Particle Swarm Optimisation in the search of a set of optimal rule weights, entailing high classification accuracy. Systematic experimental studies are carried out using common benchmark data sets, in comparison to popular rule based learning classifiers. The results demonstrate that the proposed approach can boost classification performance, especially when the size of the initially built rule base is relatively small, and is competitive to popular rule-based learning classifiers.  相似文献   

8.
Ang KK  Quek C 《Neural computation》2005,17(1):205-243
System modeling with neuro-fuzzy systems involves two contradictory requirements: interpretability verses accuracy. The pseudo outer-product (POP) rule identification algorithm used in the family of pseudo outer-product-based fuzzy neural networks (POPFNN) suffered from an exponential increase in the number of identified fuzzy rules and computational complexity arising from high-dimensional data. This decreases the interpretability of the POPFNN in linguistic fuzzy modeling. This article proposes a novel rough set-based pseudo outer-product (RSPOP) algorithm that integrates the sound concept of knowledge reduction from rough set theory with the POP algorithm. The proposed algorithm not only performs feature selection through the reduction of attributes but also extends the reduction to rules without redundant attributes. As many possible reducts exist in a given rule set, an objective measure is developed for POPFNN to correctly identify the reducts that improve the inferred consequence. Experimental results are presented using published data sets and real-world application involving highway traffic flow prediction to evaluate the effectiveness of using the proposed algorithm to identify fuzzy rules in the POPFNN using compositional rule of inference and singleton fuzzifier (POPFNN-CRI(S)) architecture. Results showed that the proposed rough set-based pseudo outer-product algorithm reduces computational complexity, improves the interpretability of neuro-fuzzy systems by identifying significantly fewer fuzzy rules, and improves the accuracy of the POPFNN.  相似文献   

9.
The present paper is a humble attempt to develop a fuzzy function approximator which can completely self-generate its fuzzy rule base and input-output membership functions from an input-output data set. The fuzzy system can be further adapted to modify its rule base and output membership functions to provide satisfactory performance. This proposed scheme, called generalised influential rule search scheme, has been successfully implemented to develop pure fuzzy function approximators as well as fuzzy logic controllers. The satisfactory performance of the proposed scheme is amply demonstrated by implementing it to develop different major components in a process control loop. The versatility of the algorithm is further proved by implementing it for a benchmark nonlinear function approximation problem.  相似文献   

10.
The task of fuzzy modelling involves specification of rule antecedents and determination of their consequent counterparts. Rule premises appear here a critical issue since they determine the structure of a rule base. This paper proposes a new approach to extracting fuzzy rules from training examples by means of genetic-based premise learning. In order to construct a 'parsimonious' fuzzy model with high generalization ability, general premise structure allowing incomplete compositions of input variables as well as OR connectives of linguistic terms is considered. A genetic algorithm is utilized to optimize both the premise structure of rules and fuzzy set membership functions at the same time. Determination of rule conclusions is nested in the premise learning, where consequences of individual rules are determined under fixed preconditions. The proposed method was applied to the well-known gas furnace data of Box and Jenkins to show its validity and to compare its performance with those of other works.  相似文献   

11.
Linguistic fuzzy modeling allows us to deal with the modeling of systems by building a linguistic model which is clearly interpretable by human beings. However, since the accuracy and the interpretability of the obtained model are contradictory properties, the necessity of improving the accuracy of the linguistic model arises when complex systems are modeled. To solve this problem, one of the research lines in recent years has led to the objective of giving more accuracy to linguistic fuzzy modeling without losing the interpretability to a high level. In this paper, a new postprocessing approach is proposed to perform an evolutionary lateral tuning of membership functions, with the main aim of obtaining linguistic models with higher levels of accuracy while maintaining good interpretability. To do so, we consider a new rule representation scheme base on the linguistic 2-tuples representation model which allows the lateral variation of the involved labels. Furthermore, the cooperation of the lateral tuning together with fuzzy rule reduction mechanisms is studied in this paper, presenting results on different real applications. The obtained results show the good performance of the proposed approach in high-dimensional problems and its ability to cooperate with methods to remove unnecessary rules.  相似文献   

12.
This paper proposes a classification method that is based on easily interpretable fuzzy rules and fully capitalizes on the two key technologies, namely pruning the outliers in the training data by SVMs (support vector machines), i.e., eliminating the influence of outliers on the learning process; finding a fuzzy set with sound linguistic interpretation to describe each class based on AFS (axiomatic fuzzy set) theory. Compared with other fuzzy rule-based methods, the proposed models are usually more compact and easily understandable for the users since each class is described by much fewer rules. The proposed method also comes with two other advantages, namely, each rule obtained from the proposed algorithm is simply a conjunction of some linguistic terms, there are no parameters that are required to be tuned. The proposed classification method is compared with the previously published fuzzy rule-based classifiers by testing them on 16 UCI data sets. The results show that the fuzzy rule-based classifier presented in this paper, offers a compact, understandable and accurate classification scheme. A balance is achieved between the interpretability and the accuracy.  相似文献   

13.
Automatic generation of fuzzy rule base and membership functions from an input-output data set, for reliable construction of an adaptive fuzzy inference system, has become an important area of research interest. We propose a new robust, fast acting adaptive fuzzy pattern classification scheme, named influential rule search scheme (IRSS). In IRSS, rules which are most influential in contributing to the error produced by the adaptive fuzzy system are identified at the end of each epoch and subsequently modified for satisfactory performance. This fuzzy rule base adjustment scheme is accompanied by an output membership function adaptation scheme for fine tuning the fuzzy system architecture. This iterative method has shown a relatively high speed of convergence. Performance of the proposed IRSS is compared with other existing pattern classification schemes by implementing it for Fisher's iris data problem and Wisconsin breast cancer data problems.  相似文献   

14.
When performing a classification task, we may find some data-sets with a different class distribution among their patterns. This problem is known as classification with imbalanced data-sets and it appears in many real application areas. For this reason, it has recently become a relevant topic in the area of Machine Learning.The aim of this work is to improve the behaviour of fuzzy rule based classification systems (FRBCSs) in the framework of imbalanced data-sets by means of a tuning step. Specifically, we adapt the 2-tuples based genetic tuning approach to classification problems showing the good synergy between this method and some FRBCSs.Our empirical results show that the 2-tuples based genetic tuning increases the performance of FRBCSs in all types of imbalanced data. Furthermore, when the initial Rule Base, built by a fuzzy rule learning methodology, obtains a good behaviour in terms of accuracy, we achieve a higher improvement in performance for the whole model when applying the genetic 2-tuples post-processing step. This enhancement is also obtained in the case of cooperation with a preprocessing stage, proving the necessity of rebalancing the training set before the learning phase when dealing with imbalanced data.  相似文献   

15.
The main aim of this paper is to present MOGUL, a Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning approach. MOGUL will consist of some design guidelines that allow us to obtain different genetic fuzzy rule-based systems, i.e., evolutionary algorithm-based processes to automatically design fuzzy rule-based systems by learning and/or tuning the fuzzy rule base, following the same generic structure and able to cope with problems of a different nature. A specific evolutionary learning process obtained from the paradigm proposed to design unconstrained approximate Mamdani-type fuzzy rule-based systems will be introduced, and its accuracy in the solving of a real-world electrical engineering problem will be analyzed. ©1999 John Wiley & Sons, Inc.  相似文献   

16.
Song  Miao  Shen  Miao  Bu-Sung   《Neurocomputing》2009,72(13-15):3098
Fuzzy rule derivation is often difficult and time-consuming, and requires expert knowledge. This creates a common bottleneck in fuzzy system design. In order to solve this problem, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a fuzzy neural network based on mutual subsethood (MSBFNN) and its fuzzy rule identification algorithms. In our approach, fuzzy rules are described by different fuzzy sets. For each fuzzy set representing a fuzzy rule, the universe of discourse is defined as the summation of weighted membership grades of input linguistic terms that associate with the given fuzzy rule. In this manner, MSBFNN fully considers the contribution of input variables to the joint firing strength of fuzzy rules. Afterwards, the proposed fuzzy neural network quantifies the impacts of fuzzy rules on the consequent parts by fuzzy connections based on mutual subsethood. Furthermore, to enhance the knowledge representation and interpretation of the rules, a linear transformation from consequent parts to output is incorporated into MSBFNN so that higher accuracy can be achieved. In the parameter identification phase, the backpropagation algorithm is employed, and proper linear transformation is also determined dynamically. To demonstrate the capability of the MSBFNN, simulations in different areas including classification, regression and time series prediction are conducted. The proposed MSBFNN shows encouraging performance when benchmarked against other models.  相似文献   

17.
A neural fuzzy system with fuzzy supervised learning   总被引:2,自引:0,他引:2  
A neural fuzzy system learning with fuzzy training data (fuzzy if-then rules) is proposed in this paper. This system is able to process and learn numerical information as well as linguistic information. At first, we propose a five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. We use alpha-level sets of fuzzy numbers to represent linguistic information. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Furthermore, they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal supervised learning techniques to the learning problems where only linguistic teaching signals are available. The fuzzy supervised learning scheme can train the proposed system with desired fuzzy input-output pairs which are fuzzy numbers instead of the normal numerical values. With fuzzy supervised learning, the proposed system can be used for rule base concentration to reduce the number of rules in a fuzzy rule base. Simulation results are presented to illustrate the performance and applicability of the proposed system.  相似文献   

18.
Reduction of fuzzy rule base via singular value decomposition   总被引:6,自引:0,他引:6  
Introduces a singular value-based method for reducing a given fuzzy rule set. The method conducts singular value decomposition of the rule consequents and generates certain linear combinations of the original membership functions to form new ones for the reduced set. The present work characterizes membership functions by the conditions of sum normalization (SN), nonnegativeness (NN), and normality (NO). Algorithms to preserve the SN and NN conditions in the new membership functions are presented. Preservation of the NO condition relates to a high-dimensional convex hull problem and is not always feasible in which case a closed-to-NO solution may be sought. The proposed method is applicable regardless of the adopted inference paradigms. With product-sum-gravity inference and singleton support fuzzy rule base, output errors between the full and reduced fuzzy set are bounded by the sum of the discarded singular values. The work discusses three specific applications of fuzzy reduction: fuzzy rule base with singleton support, fuzzy rule base with nonsingleton support (which includes the case of missing rules), and the Takagi-Sugeno-Kang (TSK) model. Numerical examples are presented to illustrate the reduction process  相似文献   

19.
Effect of rule weights in fuzzy rule-based classification systems   总被引:8,自引:0,他引:8  
This paper examines the effect of rule weights in fuzzy rule-based classification systems. Each fuzzy IF-THEN rule in our classification system has antecedent linguistic values and a single consequent class. We use a fuzzy reasoning method based on a single winner rule in the classification phase. The winner rule for a new pattern is the fuzzy IF-THEN rule that has the maximum compatibility grade with the new pattern. When we use fuzzy IF-THEN rules with certainty grades, the winner is determined as the rule with the maximum product of the compatibility grade and the certainty grade. In this paper, the effect of rule weights is illustrated by drawing classification boundaries using fuzzy IF-THEN rules with/without certainty grades. It is also shown that certainty grades play an important role when a fuzzy rule-based classification system is a mixture of general rules and specific rules. Through computer simulations, we show that comprehensible fuzzy rule-based systems with high classification performance can be designed without modifying the membership functions of antecedent linguistic values when we use fuzzy IF-THEN rules with certainty grades  相似文献   

20.
Interpretability of Mamdani fuzzy rule-based systems (MFRBSs) has been widely discussed in the last years, especially in the framework of multi-objective evolutionary fuzzy systems (MOEFSs). Here, multi-objective evolutionary algorithms (MOEAs) are applied to generate a set of MFRBSs with different trade-offs between interpretability and accuracy. In MOEFSs interpretability has often been measured in terms of complexity of the rule base and only recently partition integrity has also been considered. In this paper, we introduce a novel index for evaluating the interpretability of MFRBSs, which takes both the rule base complexity and the data base integrity into account. We discuss the use of this index in MOEFSs, which generate MFRBSs by concurrently learning the rule base, the linguistic partition granularities and the membership function parameters during the evolutionary process. The proposed approach has been experimented on six real world regression problems and the results have been compared with those obtained by applying the same MOEA, with only accuracy and complexity of the rule base as objectives. We show that our approach achieves the best trade-offs between interpretability and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号