首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenanthrene sorption to sequentially extracted soil humic acids and humins   总被引:2,自引:0,他引:2  
Humic substances strongly influence the environmental fate of hydrophobic organic chemicals in soils and sediments. In this study, the sorption of phenanthrene by humic acids (HAs) and humins was examined. HAs were obtained from progressively extracting a soil, eight times with 0.1 M Na4P207 and two times with 0.1 M NaOH solution, and then the residue was separated into two humin fractions by their organic carbon contents. The chemical and structural heterogeneity of the HAs and humins were characterized by elemental analysis, ultraviolet-visible spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and solid-state 13C NMR. There were significant chemical and structural differences among the HA fractions and humins; the later extracted HAs had relatively high aliphatic carbons content. All sorption data were fitted to a Freundlich equation, S = K(F)C(N), where S and C are the sorbed and solution-phase concentrations, respectively, and K(F) and N are constants. All of the phenanthrene sorptions were nonlinear, and the nonlinearity decreased with further extractions from 0.90 (first extracted HA) to 0.96 (ninth HA) and was the lowest (0.88) for the higher organic carbon content humin. Phenanthrene sorption coefficient by HAs significantly increased with progressive extractions, being the highest for the humins. For HAs isotherms, a positive trend was observed between the sorption coefficient and the aliphaticity, but a negative relation was shown between the nonlinearity and the aliphaticity and between the sorption capacity and polarity of HAs. Phenanthrene sorption was greatly affected by chemical structure and composition of humic substances, even from a same soil. In addition, polarity of humic substances seems to mainly regulate the magnitude of phenanthrene sorption rather than structure.  相似文献   

2.
Roles of acetone-conditioning and lipid in sorption of organic contaminants   总被引:1,自引:0,他引:1  
Sorption of phenanthrene and 1-naphthol by a peat soil (PS) and its humic acid fractions (HAs) and humin (HM) was examined. Both phenanthrene and 1-naphthol consistently had decreased isotherm nonlinearity in the order PS > HA1 (first fraction) > HA7 (seventh fraction), due to decreased heterogeneity of soil organic matter (SOM). High isotherm nonlinearity of HM was attributed to the condensed structure of SOM in it. Acetone-conditioning increased sorption affinity and isotherm nonlinearity of HAs and HM for phenanthrene, and the conditioning effect was more pronounced at low solute concentrations. However, sorption of 1-naphthol by PS, HAs, and HM was insignificantly affected by acetone-conditioning, suggesting that 1-naphthol could have disparate distribution of sorbed sites from phenanthrene due to their structure and hydrophobicity difference. Lipid removal further increased sorption of phenanthrene and 1-naphthol by acetone-conditioned PS, HAs, and HM, due to increased accessibility of high-energy sites in SOM. Nonlinearity of phenanthrene and 1-naphthol also increased after lipid removal from the acetone-conditioned sorbents. In 1-naphthol- and phenanthrene-lipid competitive sorption systems, lipid had strong competition with phenanthrene, whereas 1-naphthol exhibited cooperative sorption with lipid on lipid-free PS, HAs, and HM, again showing the different sorption characteristics between phenanthrene and 1-naphthol.  相似文献   

3.
Sorption of phenanthrene to varying soil types was investigated to better understand sorption processes. Humic acid and humin fractions were isolated from each soil sample, and sorption coefficients were measured by batch equilibration. Samples were characterized by carbon analysis and 13C cross polarization magic angle spinning (CP/ MAS) nuclear magnetic resonance (NMR) spectroscopy. Measured organic carbon-normalized sorption coefficients (Koc) of the fractions were greater in all cases when compared to the soils. The humin fractions exhibited greater Koc values than did source samples, suggesting that fractionation may reorganize organic matter in humin resulting in an increased availability of and/or more favorable sorption domains. Mass balance calculations revealed that the sum of sorption to the fractions is greater than sorption to the whole sample. The greatest difference between sorption values was found to occur with the mineral soils, suggesting that clay minerals influence the physical conformation of soil organic matter (SOM) and availability of sorption domains. The mass balance, sorption data, and a lack of consistent trends between observed Kco values and solid-state 13C NMR data suggest that the physical conformation of SOM and chemical characteristics both play important roles in sorption processes.  相似文献   

4.
Organic matter-mineral interactions greatly affect the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the impact of organic matter-mineral interaction on sorption of phenanthrene (PHE) by the original and de-ashed humic acids (HAs) and humin (HM) was examined. After de-ashing treatment, the overall polarity of organic matter in HAs and HM consistently decreased. Differently, the surface polarity of HAs increased but that of HM decreased. No correlation between K(oc) values of PHE by all tested sorbents and their bulk polarity was observed due to inaccessibility of a portion of interior sorption domains. The inaccessibility of interior sorption domains in HAs and HM was partly due to the crystalline structure in organic matter as indicated by differential scanning calorimetric (DSC) and 13C NMR data and the interference from minerals. A good correlation between surface polarity of the original and de-ashed HAs and HMs and their K(oc) values for PHE indicated its importance in HOC sorption. Dissimilar changes in surface polarity of HAs and HM after de-ashing treatment can be ascribed to the distinct interactions between organic matter and minerals. The solid-state 13C NMR, XPS, and elemental composition data of all tested sorbents revealed that a larger fraction of O atoms in HAs were involved in organic matter-mineral interaction as compared to HM. Results of this work highlight the importance of soil organic matter (SOM)-mineral interactions, surface polarity, and microscaled domain arrangement of SOM in HOC sorption.  相似文献   

5.
The first paper of this series reported that soil/sediment organic matter (SOM) can be fractionated into four fractions with a combined wet chemical procedure and that kerogen and black carbon (BC) are major SOM components in soil/sediment samples collected from the industrialized suburban areas of Guangzhou, China. The goal of this study was to determine the sorptive properties forthe four SOM fractions for organic contaminants. Sorption isotherms were measured with a batch technique using phenanthrene and naphthalene as the sorbates and four original and four Soxhlet-extracted soil/sediment samples, 15 isolated SOM fractions, and a char as the sorbents. The results showed that the sorption isotherms measured for all the sorbents were variously nonlinear. The isolated humic acid (HA) exhibited significantly nonlinear sorption, but its contribution to the overall isotherm nonlinearity and sorption capacity of the original soil was insignificant because of its low content in the tested soils and sediments. The particulate kerogen and black carbon (KB) fractions exhibited more nonlinear sorption with much higher organic carbon-normalized capacities for both sorbates. They dominate the observed overall sorption by the tested soils and sediments and are expected to be the most important soil components affecting bioavailability and ultimate fate of hydrophobic organic contaminants (HOCs). The fact that the isolated KB fractions exhibited much higher sorption capacities than when they were associated with soil/sediment matrixes suggested that a large fraction of the particulate kerogen and BC was not accessible to sorbing HOCs. Encapsulation within soil aggregates and surface coverage by inorganic and organic coatings may have caused large variations in the accessibility of fine kerogen and BC particles to HOCs and hence lowered the sorption capacity of the soil. This variability posts an ultimate challenge for precisely predicting HOC sorption by soils from the contents of different types of SOM.  相似文献   

6.
In both forest and agricultural soils, plant derived cuticular materials can constitute a significant part of soil organic matter. In this study, the sorption of nonpolar (naphthalene and phenanthrene) and polar (phenol and 1-naphthol) aromatic organic pollutants to aliphatic-rich cuticularfractions of green pepper (Capsicum annuum) (i.e., bulk (PC1), dewaxed (PC2), nonsaponifiable (PC3), nonsaponifiable-nonhydrolyzable (PC4), and dewaxed-hydrolyzed residue (PC5)) were examined to better understand the influence of polarity and accessibility on their sorption behavior. The polarity and structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state 13C NMR. The sorption isotherms fit well to the Freundlich equation. Sorption of the tested organic compounds to PC4, which had more condensed domains, was nonlinear (Freundlich N(s) values of 0.766-0.966). For naphthalene and phenanthrene, the largest sorption capacity (K(oc)) occurred in PC5, which contained the highest paraffinic carbons (63%) and the lowest polarity: approximately 2 and aproximately 3 times higher than the respective carbon-normalized octanol-water partition coefficient (K(owc)), indicating that PC5 was a powerful sorption medium. For phenol and 1-naphthol, the largest K(oc) values occurred in PC4 with polar aromatic cores: approximattely 17 and approximately 7 times higher than the respective K(owc), suggesting that PC4 was much more accessible and compatible to polar aromatic pollutants than nonpolar aromatic pollutants. There was little or no correlation of K(oc) with either aliphatic or aromatic components of the tested aliphatic-rich sorbents because the polarity and accessibility apparently played a regulating role in the sorption of organic contaminants.  相似文献   

7.
The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.  相似文献   

8.
Humin is a major fraction of soil organic matter and strongly affects the sorption behavior and fate of organic contaminants in soils and sediments. This study evaluated four different extraction methods for soil humins in terms of their organic carbon structural changes and the consequent effects on phenanthrene sorption. Solid-state 13C NMR demonstrated that 0.1 M NaOH exhaustively extracted humin and humin extracted with 6 M HF/HCl at 60 degrees C had a relatively high amount of aliphatic components as compared with 1 M HF-extracted humin. The treatment of 6 M HF/HCl at 60 degrees C greatly reduced carbohydrate components (50-108 ppm) from humin samples, i.e., more than 50% reduction. In addition, the humin from this 6 M HF/HCl treatment contained relatively more amorphous poly(methylene) domains than the humins extracted by other methods. With the respect to phenanthrene sorption, the linearity of sorption isotherm (N) and sorption affinity (Koc) varied markedly among the humin samples extracted by different methods. The NaOH exhaustively extracted humin had the most nonlinear sorption isotherm and the HF-extracted humin had the lowest Koc. It is concluded that humin samples from different extraction procedures exhibited substantial differences in their organic carbon structure and sorption characteristics, even though they were from the same soil. Therefore, one needs to be cautious when comparing the structural and sorption features of soil humins, especially when they are extracted differently. The 6 M HCl/HF extraction at elevated temperature is not encouraged, due to the modifications of chemical structure and physical conformation of organic matter.  相似文献   

9.
Sorption and displacement of pyrene in soils and sediments   总被引:2,自引:0,他引:2  
Sorption isotherms of pyrene on soils and sediments were examined to understand its sorption behavior. All systems examined exhibited nonlinear sorption. Sorption nonlinearity was found to be a function of the polarity index of soil/sediment organic matter (SOM), suggesting that the degree of condensation of SOM, characterized by its polarity index, was correlated with the sorption behavior of pyrene. The polarity index of SOM could be a new factor for explaining the sorption nonlinearity. The sorption affinity of two soils and two sediments for pyrene increased with decreasing SOM polarity. A higher sorption affinity in the two soils was associated with a higher degree of condensation of SOM compared to that of the two sediments. A displacement test was performed after pyrene sorption using phenanthrene as a displacer. Pyrene was displaced in all systems examined, and nonlinearity became less pronounced after displacement. Such an increase in isotherm linearity implied that sorption site energies became more homogeneous after displacement. Furthermore, the site energy distribution IE*) derived from the Freundlich model parameters showed that energy reduction of high-energy sites was more significant than that of low-energy sites after displacement. In addition, a decrease in sorption capacity after displacement could be ascribed to the partial depletion of sorption sites by the displacer. The displacement data indicated that the cocontaminant can have potential effects on the fate and bioavailability of anthropogenic organic pollutants sorbed in soils and sediments, thus affecting their exposure risks.  相似文献   

10.
Sorption of PAHs by aspen wood fibers as affected by chemical alterations   总被引:2,自引:0,他引:2  
Sorption and desorption experiments for phenanthrene and pyrene, using untreated (UTR) and treated (bleaching and hydrolysis) aspen wood fibers, were examined to understand their sorption mechanisms. The wood was characterized by elemental and porosity analysis, solid-state 13C NMR, and diffuse reflectance infrared Fourier transform spectroscopy. Bleaching removed aromatic components, yielding the highest polarity and increased porosity, whereas hydrolysis removed a large percentage of hemicellulose and parts of amorphous cellulose, producing a matrix with more aromatic moieties, lower polarity, and higher porosity than that of the UTR wood fibers. All isotherms fitted well to the Freundlich equation and the N values had a decreasing trend from bleached (BL), UTR, low-temperature hydrolyzed to high-temperature hydrolyzed (HHY) wood fibers. BL fibers had the lowest sorption capacity (Koc) for both phenanthrene and pyrene. HHY had the highest Koc because of its high aromatic carbon content and low polarity. The results suggest that aromatic moieties and polarity of wood fibers play significant roles in polycyclic aromatic hydrocarbon (PAHs) sorption and desorption. Thus, both aromatic components and polarity should be considered when predicting the PAHs sorption/desorption by aspen wood fibers. This study demonstrated that aspen wood fibers are a potential sorbentfor PAHs and that chemical modifications of the wood matrix can effectively increase its sorption efficiency. These results may have implications for the treatment of stormwater runoff and other PAH-contaminated liquids.  相似文献   

11.
The distinct role of extractable and polymeric lipids in plant cuticle, precursors of SOM, has received scarce attention to elucidate plant uptake and soil affinity with organic contaminants. Sorption of naphthalene and 1-naphthol to fruit cuticular fractions isolated from two species were investigated. The polarity index, physical conformation, and glass transition temperature (Tg) of these cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy, and differential scanning calorimetry, respectively. Cutin, a polymeric lipid, is the major sorption medium of the cuticle due to its large mass fraction and liquid-like nature (Tg approximately -30 degrees C). Sorption of cutin is suppressed by the extractable lipids (wax, Tg approximately 44 degrees C) acting as an antiplasticizer (enhance cutin's Tg) over nonpolar contributor. Whereas polysaccharide, as a plasticizer (lower Tg value) and polar contributor, regulates affinity of polymeric lipids (cutin and cutan). The contribution of cutin to sorption by bulk cuticle overshadows the role of waxes, and the sorption capability (K(oc)) of cutin overwhelms the octanol-water partition coefficient (K(ow)). Therefore, uptake of organic contaminants by these plants would be seriously under-predicted by their extractable lipid content and compound's K(ow) values. Along with the observed linear relationships of K(oc) with cutin content in these cuticular fractions, we suggest for the first time that the depolymerizable lipid fraction (cutin) is required to accurately predict plant accumulation of organic contaminants.  相似文献   

12.
The role of composition and structure of sedimentary organic matter (SOM) in the sorption of hydrophobic organic compounds (HOCs) was investigated by spiking 13C-labeled phenanthrene onto six estuarine sediments known to vary in SOM content and character. After equilibration and HF treatment, 13C NMR cross polarization and stable carbon isotope analyses indicated that the amount of desorption-resistant phenanthrene was related to aromatic carbon content. Application of the 13C NMR spectral editing technique proton spin relaxation editing (PSRE) demonstrated that all samples consisted of a rapidly relaxing and a slowly relaxing component, further evidence that SOM can be described as a structurally heterogeneous sorbent. Further, comparison of corresponding control and spiked PSRE subspectra revealed that, for each of the six sediments, desorption-resistant phenanthrene had become associated almost exclusively with the rapidly relaxing component. In only two of the sediments were there even small amounts of phenanthrene discernible in the slowly relaxing component, which is signficant as it was not always true that aromatic carbon was concentrated exclusively in the rapidly relaxing phase. The implication of these findings is that not all aromatic fractions have the same affinity for phenanthrene and that some fractions may indeed have little affinity at all. These results were interpreted as indicative that rapidly relaxing aromatic carbon associated with either sediment-associated charcoal or diagenetic organic matter plays a controlling role in the sorption of HOCs. However, the exact manner in which this rapidly relaxing aromatic phase relates to models presented elsewhere remains unclear.  相似文献   

13.
The sorption of phenanthrene was examined in humic acids (HAs) from different sources: a compost, a peat soil, and a mineral soil. Sub-samples of each HA were subjected to bleaching or hydrolysis to remove predetermined chemical groups from their structures. Bleaching successfully removed a large percentage of rigid, aromatic moieties, whereas hydrolysis removed the mobile, carbohydrate components. Phenanthrene sorption by all HAs was nonlinear (N < 1). However, the phenanthrene isotherms of the bleached HAs were more linear than those of the untreated HAs, whereas the removal of the carbohydrate components by hydrolysis produced more nonlinear isotherms. The introduction of pyrene to the phenanthrene sorption system yielded more linear isotherms for all the HAs, indicative of competitive sorption. Proton spin-spin (1H T2) relaxation determined by nuclear magnetic resonance (NMR) was used to identify separate rigid (condensed) and flexible (expanded) 1H populations and to determine their distribution. These 1H domains were highly sensitive to temperature and correlated well with reported glass transition temperatures for HAs. In combination with the chemical treatments, sorption, and spectroscopic data, we were able to observe some significant relationships among chemical groups, sorption behavior, and structural characteristics.  相似文献   

14.
Humic substances originated from aquatic, soil, or sediment environments are mixtures of humic compounds with various characteristics. Sorption interactions with isolated, well defined humic fractions can be studied either in an aqueous phase ("dissolved humic substances"), or in a solid-phase, by coating mineral particles with the humic materials, or simply by working with humic acid particles (powder) at low pH to minimize dissolution. Each attitude, by definition, can be studied by different experimental techniques and has a different meaning for understanding natural environmental processes. In this study, a new tool for studying sorption interactions is presented. Sol-gel was used as an inert matrix to immobilize (entrap) various humic acids (HAs), and then used to study the interactions of several polycyclic aromatic hydrocarbons (PAHs) with the entrapped HA. Linear and nonlinear sorption coefficients were highly correlated with contaminant hydrophobicity. Sorption of pyrene to immobilized HA was in the order of soil HA > Aldrich HA approximately = peat HA. It was concluded that the entrapped HAs retained their original properties in the gel matrix and were accessible to the external contaminant through the pore network. Additionally, binding coefficients of pyreneto dissolved humic substances and to dissolved organic matter (DOM) were determined from the reduction in pyrene sorption to immobilized HA in the presence of dissolved humic material or DOM in solution. Binding coefficients of pyrene were in the order of the following: dissolved Aldrich HA > dissolved peat fulvic acid (FA) > DOM derived from mature compost > DOM derived from fresh compost.  相似文献   

15.
Results from natural and engineered phytoremediation systems provide strong evidencethatvegetated soils mitigate polycyclic aromatic hydrocarbon (PAH) contamination. However, the mechanisms by which PAH mitigation occurs and the impact of plant organic matter on PAH attenuation remain unclear. This study assessed the impact of plant organic matter on PAH attenuation in labile and refractory sediments fractions from a petroleum distillate waste pit that has naturally revegetated. Samples were collected in distinct zones of barren and vegetated areas to assess changes to organic matter composition and PAH content as vegetation colonized and became established in the waste pit. Sediments were fractionated into bulk sediment and humin fractions and analyzed for organic matter composition by isotope ratio mass spectrometry (delta (13)C), 13C nuclear magnetic resonance (13C NMR), delta 14C AMS (accelerator mass spectrometry), and percent organic carbon (%TOC). Gas chromatography mass spectrometry (GC/ MS) of lipid extracts of SOM fractions provided data for PAH distribution histograms, compound weathering ratios, and alkylated and nonalkylated PAH concentrations. Inputs of biogenic plant carbon, PAH weathering, and declines in PAH concentrations are most evidentfor vegetated SOM fractions, particularly humin fractions. Sequestered PAH metabolites were also observed in vegetated humin. These results show that plant organic matter does impact PAH attenuation in both labile and refractory fractions of petroleum distillate waste.  相似文献   

16.
Soil and sediment materials having organic matter matrixes of different geochemical character were examined with respect to their sorption and desorption of phenanthrene in the presence of order-of-magnitude larger concentrations of trichloroethylene (TCE) and dichlorobenzene (DCB). These co-contaminants depressed phenanthrene sorption in the lowest residual solution phase concentration ranges of that target solute investigated, whereas in its highest residual concentration regions phenanthrene sorption was either not affected or was actually enhanced. In both concentration ranges, the effects observed varied with the hydrophobicity and relative concentration of the co-contaminant and with the geological maturity and associated degree of condensation and aromatization of the soil/sediment organic matter (SOM). Desorption isotherms for phenanthrene indicate the occurrence of increased hysteresis in the presence of high concentrations of DCB and TCE, the effect increasing with increased degree of associated organic condensation. Tests in which high concentrations of DCB and TCE were added after completion of the phenanthrene desorption experiments show clear evidence of partial displacement of sorbed phenanthrene to the solution phase. The results of the work support the concept of SOM glass-transition concentrations, above which matrix deformation occurs and so-called "conditioning effects" are observed.  相似文献   

17.
Nonhydrolyzable organic carbon (NHC) and sorption isotherms of phenanthrene (Phen) on six size-fractionated NHC fractions in two sediments from the Pearl River and Estuary, South China, were investigated. It was found that NHC including ancient organic carbon, black carbon, resistant aquatic organic carbon, and aged soil organic carbon consists mainly of aliphatic and aromatic carbon using 13C nuclear magnetic resonance spectroscopy. The sorption isotherms of Phen by the size-fractionated NHC fractions are nonlinear and are well-fitted to the Freundlich model. For the estuary sediment, the NHC contents and the organic carbon-normalized distribution coefficients (Koc) in the size fractions increase with decreasing particle size. The clay NHC fraction contributes to 70% of the Phen sorption by the bulk NHC isolate. However, for the contaminated river sediment, the NHC contents and the Koc values exhibit no regular variations among the size fractions. The Phen sorption capacities on the size-fractionated NHC fractions of the two sediments are significantly related to their H/C ratios and aliphatic carbon, but negatively to aromatic carbon. The fine-particle NHC fractions with high aliphatic carbon and H/C ratio play a very important role in the sorption, transport, and fate of Phen by the investigated sediments.  相似文献   

18.
The nonhydrolyzable carbon (NHC) and black carbon (BC) in three contaminated soils and seven sediments from the Pearl River Delta and Estuary, China, were isolated upon treatments with an acid hydrolysis method and with a combustion method at 375 degrees C, respectively, and their sorption isotherms for phenanthrene (Phen) were established. It was found that NHC is chemically and structurally different from the biopolymer and humic substances and consists mainly of aliphatic and aromatic carbon using elemental analysis, 13C nuclear magnetic resonance spectroscopy (13C NMR), and Fourier transformed infrared spectroscopy (FTIR). All the sorption isotherms are nonlinear and are well fitted by the Freundlich model. The single-point organic carbon-normalized distribution coefficient (K(oc)) measured for the isolated NHC is 1.3-7.7 times higher than that for the bulk samples at the same aqueous concentration of Phen. The NHC fractions play a dominant role to the overall sorption in the bulk samples. The bulk soils and their NHC fractions have lower sorption capacity than the bulk sediments and their NHC fractions, relating to the different source of organic matter between soils and sediments. The Phen sorption capacity in the NHC samples is related significantlyto H/C ratios and aliphatic carbon, but negatively to aromatic carbon, demonstrating the important role of aliphatic carbon to the Phen sorption and the fate in the investigated soils and sediments.  相似文献   

19.
Equilibrium sorption of phenanthrene and its relationship with plant lipid contents were investigated using roots and shoots of alfalfa, ryegrass, tomato, potato, carrot, cucumber, zucchini, and pumpkin. Lipid extractions using chloroform and hexane were compared, and the influence of dechlorophyllization on lipid determinations was evaluated. The sorption isotherms were close to linear (R2 > 0.923, P < 0.05) and the plant-water partition coefficients (K(pl)) of phenanthrene obtained from the isotherms exhibited significant and positive correlations with plantlipid contents (R2 > 0.664, P < 0.05). The correlations were more significant (R2 > 0.906, P < 0.001) when dechlorophyllization was included in the lipid extraction. The measured sorption was higher than that estimated using the octanol-water partition coefficient (K(ow)) but was very close to the estimate using the triolein-water partition coefficient (K(tw)). This study leads us to conclude that dechlorophyllization is necessary for plant lipid determination and that K(tw) is more accurate as a substitute for the lipid-water partition coefficient (K(lip)) than K(ow). These novel approaches may provide substantial improvements in the application of partition-limited models for the estimation of plant uptake of organic contaminants.  相似文献   

20.
Phenanthrene sorption by aliphatic-rich natural organic matter   总被引:1,自引:0,他引:1  
Contaminant sorption, an important process that may limit bioavailability, hinder remediation, encourage environmental persistence, and control mobility in the environment, has been the focus of numerous studies. Despite these efforts, the fundamental understanding of sorptive processes in soil and sedimentary environments has not been resolved. For instance, many have suggested that contaminants, such as polycyclic aromatic hydrocarbons (PAHs), solely interact with aromatic domains of organic matter. Until now, studies have neglected the aliphatic components that are known to be a recalcitrant and significant part of soil and sedimentary organic matter (SOM). In this investigation, the sorption of phenanthrene to several aliphatic-rich SOM samples was measured. The samples included the following: SOM precursors (algae, degraded algae, cellulose, collagen, cuticle, and lignin), two kerogen samples, and a highly aromatic humic acid. All samples were characterized by cross polarization magic angle spinning carbon-13 (CPMAS 13C) NMR and carbon, hydrogen, and nitrogen analysis. Batch experiments demonstrated that the highest organic carbon normalized sorption coefficients (Koc values) were obtained with the Pula kerogen sample (log Koc = 4.88) that only contains 6.5% aromatic carbon. Other aliphatic-rich samples, namely the Green River kerogen, degraded algae, and collagen samples produced comparable log Koc values (4.64, 4.66, and 4.72, respectively) to that of the highly aromatic humic acid (log Koc = 4.67). Phenanthrene uptake was the least for cellulose and lignin, two major soil components. A comparison of phenanthrene Koc values and paraffinic carbon content revealed a positive correlation (Koc = 798 +/- 96.1 * paraffinic carbon (%), r2 = 0.56) and indicates that amorphous polymethylene carbon is an important consideration in phenanthrene sorption. This study establishes that aliphatic SOM domains have a strong affinity for phenanthrene and likely, other PAHs. Therefore, aliphatic structures, that are an important component of SOM, require more attention in the examination of sorption processes in terrestrial and sedimentary environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号