首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article presents the formulas of quadrature frequency resolved spectroscopy (QFRS) on the upconversion photoluminescence (UCPL) of rare-earth (RE) doped materials on the general M-level model. The formulas are derived in matrix-equation form with the first-order perturbation on the rate equations at the M energy-levels of RE ion. The QFRS spectra for three different UCPL processes, i.e., the excited state absorption (ESA), energy transfer upconversion (ETU) and photon avalanche (PA) via cross relaxation process (CRP) in a particular case of M?=?3 are demonstrated with the respective salient features of the excitation power dependence. We have measured the QFRS on the UCPL (4 S 3/24 I 15/2) by systematically varying Er-doping in Ge28.1Ga6.3S65.6 chalcogenide glass from 0.01 to 0.5 at.% as well as 975 nm excitation power. Thereby the relaxation rates k 1 at the intermediate level 4 I 11/2, k 2 at the top level 4 S 3/2 and ETU parameter w are determined as a function of Er concentration. The UCPL dynamics on the basis of the formulas for the 3-level model is interpreted in terms of the determined parameters.  相似文献   

2.
The yeast Saccharomyces cerevisiae is commonly employed in industrial ethanol production, regardless of the capability of Kluyveromyces marxianus strains to produce ethanol at similar or higher levels and on inhibitory conditions. Therefore, in this work strains of S. cerevisiae (ethanol RED and AR5) and K. marxianus (SLP1 and OFF1) were compared for ethanol production from sugarcane bagasse (SCB) and wheat straw (WS) hydrolysates. As it is known, during the lignocellulosic hydrolysis not only free sugars were obtained (SCB, g L?1: glucose 7.64, xylose 8.38, arabinose 2.43; and WS, g L?1: glucose 6.07, xylose 6.36, arabinose 2.09) but also growth inhibitors of yeast such as hydroxymethylfurfural and furfural that could modify the fermentation capability. The volumetric ethanol productivity (Q p) was evaluated, and it was observed that the K. marxianus SLP1 was the most efficient for ethanol production reaching a Q p of 0.292 and 0.250 g L?1 h?1 on SCB and WS hydrolysates, respectively. In contrast, S. cerevisiae AR5 and ethanol RED exhibited a reduced Q p on SCB, but similar values of Q p to K. marxianus OFF1 on WS. The results obtained show that it is possible to select K. marxianus yeast strains for ethanol production using SCB and WS hydrolysates obtaining higher Q p than S. cerevisiae yeast strains. Considering the efficiency of ethanol production and the tolerance to inhibitors, K. marxianus strain SLP1 possesses a great potential as an industrial yeast for lignocellulosic ethanol production.  相似文献   

3.
In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

4.
A novel CaO–2CuO–Nb2O5 (CCN) ceramic composite was prepared by the solid-state reaction method in the temperature range of 810–890 °C. Typically, the CCN sintered at 870 °C exhibited the excellent microwave properties of ε r ?=?15.7, Q?×?f?=?28,700 GHz, τ f = ? 38.4 ppm/°C. The τ f of CCN was turned to be near zero by adding TiO2, while the ε r increased slightly and the Q?×?f decreased. The 0.91CCN–0.09TiO2 ceramic sintered at 920 °C showed modified properties of ε r ?=?16.9, Q?×?f?=?21,500 GHz, τ f = ? 1.6 ppm/°C, which shows potential in LTCC applications.  相似文献   

5.
Porous BiScO3–0.64PbTiO3 (0.36BS–0.64PT) ceramics were fabricated by using burnable plastic sphere technique. Self-synthesized polystyrene microsphere (PS, φ0.36 μm) and poly methyl methacrylate (PMMA, φ2, 10 and 18 μm) micro-balls were selected as PFA. The porosity, microstructure and electrical properties were investigated for porous 0.36BS–0.64PT ceramics fabricated with different particle sizes of pore forming agents (PFA). With increasing particle sizes of PFA, the pore size and porosity increased. Meanwhile relative permittivity (ε r), piezoelectric coefficient (d 33, ?d 31) and electromechanical coupling coefficients (k p, k t) decreased. The mechanical quality factor (Q m), elastic coefficient (s 11), hydrostatic voltage coefficient (g h) and hydrostatic figure of merit increased accordingly. Finally, the effects of particle sizes of PFA on the microstructure and electrical properties were discussed.  相似文献   

6.
Piezoelectric ceramics xLiNbO3yBiScO3–(1?x?y)PbTiO3 (LN–BS–PT, 0.00?≤?x?≤?0.10, 0.30?≤?y?≤?0.36) were synthesized and their phase diagram and morphotropic phase boundary between rhombohedral and tetragonal phases have been confirmed. The optimal properties were found at the composition of 0.03LN–0.36BS–0.61PT with piezoelectric coefficient d33* value of 702 pm/V, d33 of 551 pC/N, planar electromechanical coupling factor kp of 0.51, remnant polarization Pr of 46.5 µC/cm2, Curie temperature Tc of 337 °C, and a large strain of 0.351% at an electric field of 50 kV/cm and frequency of 2 Hz with a low strain hysteresis of 5.9%. The Curie temperature of the ternary system presents a linear relationship with LiNbO3 and BiScO3 contents. The optimization of these electric properties was probably ascribed to the enhancement in domain walls and the improving mobility of domain switching due to LiNbO3 doping.  相似文献   

7.
The microwave dielectric properties of Ba2MgWO6 ceramics were investigated with a view to the use of such ceramics in mobile communication. Ba2MgWO6 ceramics were prepared using the conventional solid-state method with various sintering temperatures. Dielectric constants (? r ) of 16.8–18.2 and unloaded quality factor (Q u  × f) of 7000–118,200 GHz were obtained at sintering temperatures in the range 1450–1650 °C for 2 h. A maximum apparent density of 6.76 g/cm3 was obtained for Ba2MgWO6 ceramic, sintered at 1650 °C for 2 h. A dielectric constant (? r ) of 18.4, an unloaded quality factor (Q u  × f) of 118,200 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?34 ppm/°C were obtained when Ba2MgWO6 ceramics were sintered at 1650 °C for 2 h.  相似文献   

8.
The effect of the stress state on the fracture locus function of the 50 vol.% Al/SiC metal matrix composite at high temperature is studied. The value of fracture locus function is quantitatively characterized by the amount of shear strain accumulated prior to the moment of failure. Nondimensional invariant parameters are used as characteristics of the stress state, namely, the stress triaxiality k and the Lode-Nadai coefficient μ σ showing the form of the stress state. Besides conventional testing for tension, compression and torsion of smooth cylindrical specimens, the complex of mechanical tests includes a new type of testing, namely, that for bell-shaped specimens. These kinds of testing enable one to study fracture strain under monotonic deformation in the ranges μ σ ?=?0?…?+?1 and k?=???1.08...0 without using high-pressure technologies. The stress–strain state during specimen testing is here evaluated from the finite element simulation of testing in ANSYS. The tests were performed at a temperature of 300 °C and shear strain rate intensity Η?=?0.1;?0.3;?0.5 1/s. The test results have offered a fracture locus, which can be used in models of damage mechanics to predict fracture of the material in die forging processes.  相似文献   

9.
The ZnO–Nb2O5xTiO2 (1 ≤ x ≤ 2) ceramics were fabricated by reaction-sintering process, and the effects of TiO2 content and sintering temperature on the crystal structure and microwave dielectric properties of the ceramics were investigated. The XRD patterns of the ceramics showed that ZnTiNb2O8 single phase was formed as x ≤ 1.6 and second phase Zn0.17Nb0.33Ti0.5O2 appeared at x ≥ 1.8. With the increase of TiO2 content and sintering temperature, the amount of the second phase Zn0.17Nb0.33Ti0.5O2 increased, resulting in the increase of dielectric constant, decrease of Q × f value, and the temperature coefficient of resonant frequency (τ f ) shifted to a positive value. The optimum microwave dielectric properties were obtained for ZnO–Nb2O5–2TiO2 ceramics sintered at 1075 °C for 5 h: ε r  = 45.3, Q × f = 23,500 GHz, τ f  = +4.5 ppm/°C.  相似文献   

10.
Polarized optical reflectance of single crystalline β-FeSi2 has been investigated up to 3.1 eV for the light polarization of E//a, E//b and E//c. We observed the clear anisotropy in the spectrums of reflectance, refractive index n, extinction coefficient k and dielectric function ε, depending on the light polarizations. From the comparison with the experiments and the theoretical calculation, we found that features of those experimental spectrums agrees well with the theoretical ones calculated by the full potential linear augmented plane wave method based on the density functional theory and the dipole approximation. The anisotropy of n was found to be 10–20% between 1 eV and 3.1 eV, while it was small (<~ 5%) below 1 eV.  相似文献   

11.
Let f be an unknown multivariate density belonging to a set of densities \(\mathcal{F}_{k^{*}}\) of finite associated Vapnik–Chervonenkis dimension, where the complexity k * is unknown, and ? k ?? k+1 for all k. Given an i.i.d. sample of size n drawn from f, this article presents a density estimate \(\hat{f}_{K_{n}}\) yielding almost sure convergence of the estimated complexity K n to the true but unknown k * and with the property \(\mathbf{E}\{\int|\hat{f}_{K_{n}}-f|\}=\mbox{O}(1/\sqrt{n}\,)\). The methodology is inspired by the combinatorial tools developed in Devroye and Lugosi (Combinatorial methods in density estimation. Springer, New York, 2001) and it includes a wide range of density models, such as mixture models and exponential families.  相似文献   

12.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

13.
Investigating laminar separation over the turbine blade of a horizontal-axis wind turbine (HAWT) has been considered an important task to improve the aerodynamic performance of a wind turbine. To better understand the laminar separation phenomena, in this study, the aerodynamic forces of a SD8000 airfoil (representing the sectional blade shape) in the steady-state conditions were first predicted using an incompressible Reynolds-averaged Navier–Stokes solver with the γRe θt and kk Lω transition models. By comparing simulation and experimental results, the kk Lω transition model was chosen to simulate the laminar separation on three-dimensional (3D) turbine blade. Experimentally, a HAWT with three blades was then tested in a close-circuit wind tunnel between the tip speed ratios (TSRs) of 2 and 7 at the wind speed of 10 m/s. In addition, through computational fluid dynamics, the turbine performance and flow characteristics on the blade as blade is rotating were investigated. It is shown that 3D simulations agreed well with the experimental results with regard to the mechanical power of the HAWT at the testing TSRs. Moreover, the separation and reattachment lines on the suction surface of the turbine blade were also observed through the skin friction line, indicating that laminar separation moved toward the trailing edge with the increasing TSR at the blade tip region.  相似文献   

14.
Crystal structure and dielectric properties of Zn3Mo2O9 ceramics prepared through a conventional solid-state reaction method were characterized. XRD and Raman analysis revealed that the Zn3Mo2O9 crystallized in a monoclinic crystal structure and reminded stable up to1020 °C. Dense ceramics with high relative density (~ 92.3%) were obtained when sintered at 1000 °C and possessed good microwave dielectric properties with a relative permittivity (ε r ) of 8.7, a quality factor (Q?×?f) of 23,400 GHz, and a negative temperature coefficient of resonance frequency (τ f ) of around ??79 ppm/°C. With 5 wt% B2O3 addition, the sintering temperature of Zn3Mo2O9 ceramic was successfully lowered to 900 °C and microwave dielectric properties with ε r ?=?11.8, Q?×?f?=?20,000 GHz, and τ f = ??79.5 ppm/°C were achieved.  相似文献   

15.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

16.
In the present work, a novel MgAl2Ti3O10 ceramic was obtained using a traditional solid-state reaction method. X-ray diffraction and energy dispersive spectrometer showed that the main MgAl2Ti3O10 phase was formed after sintered at 1300–1450 °C. With rising the sintering temperature from 1300 to 1450 °C, the bulk density (ρ), relative permittivity (ε r ) and Q?×?f value firstly increased, reached the maximum values (3.61 g/cm3, 14.9, and 26,450 GHz) and then decreased. The temperature coefficient of resonator frequency (τ f ) showed a slight change at a negative range of ??94.6 to ??83.7 ppm/°C. When the sintering temperature was 1400 °C, MgAl2Ti3O10 ceramics exhibited the best microwave dielectric properties with Q?×?f?=?26,450 GHz, ε r ?=?14.9 and τ f ?=???83.7 ppm/°C.  相似文献   

17.
The crack deflection in transformable particle-reinforced composites is studied in the present paper.The contribution of phase transformation on the crack tip Jk-integral (k = 1, 2) is explicitly determined bythe material configurational theory. For the crack deflection angle from its original crack path induced by thephase transformation it can be shown that the crack initiates in the direction along which the potential energyrelease rate in terms of the crack tip Jk-integral possesses a stationary (maximum) value. The influence of oneindividual particle near the crack tip on the crack deflection is studied by accounting for both dilatant and sheartransformation components. Furthermore, an FEM method is developed to model the stress-induced phasetransformation on the basis of a macroscopic phenomenological constitutive model where multiple particlesare taken to be non-uniformly distributed in a matrix.Numerical simulations are performed to observe the crackdeflection by a cluster of particles. The results show a significant non-symmetric stress distribution locally atthe crack tip, causing the crack to deflect. It is found that regions in the material with a higher volume fractionof transformable particles tend to deflect the crack growth more.  相似文献   

18.
Magnesium-iron chromium oxides (Mg0.2Cr1.8?x Fe x O3 with x varying from 0.3 to 0.9) produced by hydrothermal process in a stirred pressure reactor from pure metal chlorides have been annealed at 700 °C. Single phase corundum structure and nanophase structure of the as-synthesized samples were confirmed by X-ray diffraction (XRD). Instead of the correlation between H EB and D XRD observed at T A = 600 °C, we find significant changes. The H EB increases with decreasing particle size reaches a maximum at ~43 nm (x = 0.5) then decreases.  相似文献   

19.
An attempt has been made to correlate the morphological and electrical properties of RF sputtered aluminum nitride (AlN), with target to substrate distance (D ts) in sputter chamber. AlN films, having thickness around 3,000 Å, were deposited on silicon substrates with different D ts values varying from 5 to 8 cm. XRD results indicated that the crystallinity of c-axis oriented films increase significantly with decrease in D ts and the FTIR absorption band of the films became prominent at shorter D ts. The surface roughness increased from 1.85 to 2.45 nm with that in D ts. A smooth surface with smaller grains was found at shorter D ts. The capacitance–voltage (C–V) measurements revealed that the insulator charge density (Q in) increased from 3.3 × 1011  to 7.3 × 1011 cm?2 and the interface state density (D it) from 1.5 × 1011  to 7.3 × 1011 eV?1cm?2 with the increase in D ts.  相似文献   

20.
We report fluctuation-induced conductivity (FIC) of the polycrystalline MgB2 superconductor in the presence of magnetic field. The results are described in terms of the temperature derivative of the resistivity, dρ/dT. The dρ/dT peak temperature observed for H = 0 Tesla at 39 K remains very distinct under applied fields of 6 Tesla and 8 Tesla at 22 and 20 K respectively. Aslamazov and Larkin (AL) equations are used to explain the anisotropic nature of the polycrystalline MgB2. The effective coherence length, ξ p (0) determined experimentally is 55.17 Å, which roughly matches with previously reported experimental work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号