首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
还原焙烧—磁选工艺可有效提取红土镍矿中的镍和铁等有价金属,由于影响红土镍矿还原焙烧—磁选效果的因素较多,导致工业生产中的选矿指标不稳定。为进一步提高还原焙烧—磁选工艺处理红土镍矿的效果,本研究以青海某镍矿为原料,采用正交试验与BP神经网络相结合的方法,对还原焙烧—磁选工艺的还原剂用量、焙烧温度、料层厚度、焙烧时间及磁场强度等因素进行了优化。结果表明:通过BP神经网络模型优化后的试验条件为还原剂用量9.5%、焙烧温度1 070℃、料层厚度10.0 mm、焙烧时间65 min及磁场强度2.5 kA·m-1,在此条件下可获得产率为30.29%的镍粗精矿,比采用正交试验最优因素组合条件所得的镍粗精矿产率提高了2.83%。  相似文献   

2.
以某赤褐铁矿为研究对象,根据赤褐铁矿的矿石特性,采用还原焙烧—磁选工艺对其进行了试验研究。结果表明:还原焙烧—磁选工艺可有效地富集该赤褐铁矿中的铁,最终得到了铁品位为55.77%、回收率为85.48%的铁精矿。  相似文献   

3.
为解决鲕状赤铁矿利用的技术难题,采用"微波还原焙烧-弱磁选"提铁工艺处理鲕状赤铁矿。基于对矿物的XRD、SEM和EDX以及化学检测分析,研究了脱磷后鲕状赤铁矿"微波还原焙烧-弱磁选"的最佳工艺条件。结果发现,浮选后铁精矿在温度为650℃、煤粉配比为15%、焙烧时间为10min的条件下经微波还原焙烧后进行弱磁选,在磁场强度为80kA/m,磨矿细度为-0.038mm占41.5%的弱磁选条件下,经"1粗1扫"弱磁选工艺,最终获得了品位为62.8%、作业回收率82.5%和含磷量0.27%的磁铁精矿。  相似文献   

4.
难选鲕状赤铁矿焙烧-磁选和直接还原工艺的探讨   总被引:6,自引:0,他引:6  
针对难选鲕状赤铁矿, 在实验室条件下采用磁化焙烧-磁选工艺制取铁精矿和直接还原工艺制取海绵铁, 研究了还原时间、温度、还原剂用量等对两种焙烧过程的影响。研究结果表明: 采用无烟煤作还原剂, 在850 ℃时焙烧45 min的焙烧矿经过磁选后获得铁精矿品位达到61.60%, 回收率达到96.65%的较好指标; 采用直接还原在环状装料方式下还原焙烧, 采用无烟煤和碳酸钙的混合物为还原剂, 1 050 ℃时焙烧5.0 h, 经过磁选得到的海绵铁的品位、金属化率和回收率可分别达到了89%、90%和85%。  相似文献   

5.
广西某难选褐铁矿原矿铁品位为36.71%。针对该矿性质,采用强磁选、重选、浮选、还原焙烧-弱磁选等工艺进行了选矿试验研究。结果表明,采用还原焙烧—弱磁选的联合工艺流程获得的选矿指标远高于其它选矿方法,该工艺最终获得铁品位为58.76%、铁回收率为82.86%的铁精矿产品。  相似文献   

6.
还原焙烧-磁选是处理镁质红土镍矿的常用工艺,为考察还原焙烧-磁选过程中各因素对镍分选效果的影响规律,研究以青海某低品位镁质红土镍矿为原料,采用正交试验方法进行试验,并对正交试验结果进行了极差和方差分析.结果表明,料层厚度和磁场强度是影响还原焙烧-磁选镍粗精矿产率及回收率的显著因素,而焙烧温度、焙烧时间以及还原剂用量是影响还原焙烧-磁选镍粗精矿产率及回收率的不显著因素.还原焙烧-磁选分选镍的粗选作业最优条件为:还原剂用量为5%、还原温度为800℃、料层厚度为10mm、还原时间为30min、磁场强度为200kA/m,在此条件下,可获得产率22.88%、回收率38.99%的镍粗精矿.研究对镁质红土镍矿现场生产具有重要的参考意义.  相似文献   

7.
王帅  孙永升  韩跃新  李艳军  高鹏 《金属矿山》2022,51(11):115-119
磁化焙烧—磁选是目前处理难选铁矿的主要方法之一,为了探究焙烧工艺参数对赤铁矿磁性转化率及磁选指标的影响规律,以天然赤铁矿纯矿物为研究对象系统地开展了赤铁矿磁化焙烧—磁选试验,并采用偏光显微镜及XRD探究了磁铁矿的生长趋势和物相转变过程。结果表明:针对本研究试样,适宜的焙烧条件为焙烧温度550 ℃、CO浓度20%、还原时间4 min,此时赤铁矿的磁性转化率为32.99%,样品的磁选回收率达到99.58%。赤铁矿焙烧过程中新生磁铁矿首先在矿物表面及裂隙生成,随着焙烧时间的增加,新生磁铁矿沿矿石颗粒表面向内部生长。当颗粒外层部分被还原为磁铁矿,赤铁矿转化率达到32.99%时,整个颗粒即可在磁选过程中被回收,无须将赤铁矿完全还原为磁铁矿,便可获得良好的磁选指标。  相似文献   

8.
采用浮选—还原焙烧—磁选工艺对某铜冶炼渣回收铜、铁进行研究。试验结果表明,采用硫化浮选法回收铜渣中的铜,可得到铜品位31.29%、铜回收率87.81%的铜精矿;选铜后的尾矿再通过还原焙烧—磁选工艺回收铁,可得到铁品位92.6%、铁回收率91.33%的还原铁粉。  相似文献   

9.
针对褐铁矿铁品位难提高的问题, 采用“微波还原焙烧-磁选”工艺, 将褐铁矿还原成磁铁矿, 弱磁选后获得高品位磁铁精矿。采用SEM和XRD检测方法, 研究了褐铁矿微波焙烧过程中的矿相演变规律, 同时采用单因素实验方法, 重点考察了保温时间、焙烧温度、配碳量以及磁选电流和磨矿细度对焙烧矿磁选结果的影响。结果表明:随着温度升高, 褐铁矿逐渐还原为磁铁矿, 加热到570~650 ℃时, 生成大量磁铁矿, 750 ℃下焙烧矿烧结严重, 并产生大量弱磁性的硅酸亚铁, 不利于后续磁选。单因素实验结果及分析表明, 褐铁矿微波还原焙烧-磁选最佳工艺条件为:保温时间7.5 min, 焙烧温度650 ℃, 配碳量1.40%, 磁选电流0.6 A, 磨矿细度-0.044 mm。最终获得的铁精矿品位、回收率及产率分别为61.33%、75.11%和40.17%, 达到了炼铁生产入炉要求。  相似文献   

10.
马钢姑山铁矿石TFe品位为37.68%,主要含铁矿物为赤铁矿,脉石成分主要为SiO2和Al2O3,有害元素P含量较高,采用传统选矿技术难以获得良好的技术经济指标,而对难选铁矿进行磁化焙烧是一种有效的预处理手段。针对姑山铁矿石开展了磁化焙烧—弱磁选试验研究,并探究了焙烧给矿粒度、焙烧温度、还原气浓度、焙烧时间对磁化焙烧效果的影响。结果表明:在焙烧给矿粒度为-0.074 mm占50%、焙烧温度500℃、CO气体浓度40%、焙烧时间20 min、气体流量500 mL/min的条件下进行磁化还原焙烧,焙烧产品经磨矿—磁选—再磨—磁选—三段磨矿—磁选工艺,可获得铁品位63.98%、铁回收率83.32%、P含量0.15%的铁精矿。产品指标优于现有工艺,研究结果可为马钢姑山铁矿的高效利用提供新思路。  相似文献   

11.
鞍山某复杂难选铁矿石铁含量为31.12%,主要以赤铁矿、磁铁矿形式存在,脉石矿物主要是石英。为确定预选—磁化焙烧—弱磁选工艺处理该铁矿石的可行性,进行了选矿试验研究,着重研究了焙烧温度、还原气氛CO浓度、焙烧时间和焙烧产物磨矿细度对铁精矿产品指标的影响。结果表明,在焙烧温度为560℃,CO浓度为30%,焙烧时间为10 min,焙烧产品磨矿细度为-0.038 mm占92.85%,弱磁选磁场强度为103.45 kA/m条件下,可获得铁品位为64.63%、回收率为92.01%的铁精矿。预选—磁化焙烧—弱磁选工艺是该复杂难选铁矿石的高效开发与利用工艺。  相似文献   

12.
针对某含镍铜尾矿镍品位低、矿物组成复杂等问题,以焦炭为还原剂,NaCl、Na2CO3和NaClO为添加剂,采用还原焙烧方法对含镍铜尾矿进行预处理,焙烧熟料采用磁选回收镍。采用Box-Behnken响应曲面法进行试验设计并优化含镍铜尾矿还原焙烧过程中各添加剂用量,分析各因素水平间的交互作用对磁选指标的影响,并建立自变量与响应值间的数学预测模型,确定还原焙烧—磁选工艺处理含镍铜尾矿的最优工艺条件为:NaCl用量23.723%、Na2CO3用量14.552%、NaClO用量10%,在此条件下得到预测磁选镍精矿的镍品位为3.528%。试验结果对优化含镍铜尾矿还原焙烧工艺具有可行性。  相似文献   

13.
武丹宇  庄故章  冯艳虎 《矿冶》2023,32(1):38-43
对老挝某褐铁矿抛尾矿进行了磁化焙烧—重选—磁选试验。在工艺矿物学研究的基础上,对该矿进行了焙烧、磁选、重选分选试验,并进行了多流程对比试验,研究出了适合该矿的选矿工艺流程,采用还原焙烧—摇床—弱磁选,取得了精矿产率42.95%、铁精矿品位62.10%、回收率45.73%的指标;采用中选焙烧—摇床—弱磁选,取得了精矿产率28.41%、铁精矿品位59.70%、回收率29.28%的指标。  相似文献   

14.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

15.
回转窑直接还原—磁选是处理红土镍矿制备镍铁合金粉的重要工艺之一,然而通过回转窑高温还原—干式磁选所得的粗镍铁富集物中,镍、铁的品位较低,难以满足后续电炉冶炼的要求,故需要对其进行强化磨选试验。基于红土镍矿还原矿的工艺矿物学研究,考察了球磨时间、磁场强度、高压辊磨对磁选效果以及解离度的影响。结果表明:高温还原后,粗镍铁富集物中镍铁粒度差异主要受高温还原程度以及镍铁在原矿中分布不均的影响,还原矿渣相主要以橄榄石和顽火辉石为主。常规的磨矿—磁选工艺所得精矿镍和铁品位较低,金属回收率不高。开发高压辊磨工艺,可强化还原焙烧矿镍铁颗粒单体解离,显著提高金属回收率和磁选精矿品位。当还原焙烧矿在7 000 N/cm2的高压辊磨压力下进行预处理后,镍和铁回收率均提高10个百分点以上,分别高达91.17%和94.02%;镍和铁品位提高0.5和6.07个百分点,分别为6.72%和86.44%。  相似文献   

16.
山东某赤泥预富集精矿铁品位为44.32%,铁主要以赤(褐)铁矿形式存在,铁在赤(褐)铁矿中分布率为96.57%。为实现赤泥中铁矿物的有效回收,采用气基还原焙烧—弱磁选工艺进行了系统的铁矿物回收试验。结果表明,在焙烧温度为560℃、焙烧时间为10 min、总气体流量为500 mL/min、CO浓度为20%条件下进行还原焙烧,焙烧产品磨细至-0.038 mm占80%,在磁场强度为85 k A/m条件下进行弱磁选,可以获得铁品位为57.27%、回收率为90.82%的铁精矿。气基还原焙烧—弱磁选技术实现了赤泥中铁矿物的有效回收,为赤泥资源的开发利用开辟了新的途径。  相似文献   

17.
酒钢选矿厂-15 mm粉矿采用连续磨矿—强磁选工艺处理,仅能获得铁品位为46.60%、铁回收率为65.70%的铁精矿,该指标远低于现场+15 mm块矿竖炉磁化焙烧—再选工艺的铁精矿指标。为确定-15 mm粉矿的合理处理工艺,以破碎—压球—竖炉还原焙烧—弱磁选工艺为参照,进行了-15 mm粉矿磨矿—强磁预选抛尾—压球—焙烧—弱磁选工艺试验。结果表明:(1)添加黏结剂的强磁预选精矿冷压球强度满足竖炉磁化焙烧要求。(2)冷压球在与+15 mm块状矿石共炉焙烧的半工业试验中,获得了铁品位为55.48%、铁回收率82.67%的精矿。(3)冷压球在单独竖炉焙烧的工业试验中,获得了铁品位为53.43%、铁回收率78.38%的精矿,与现场采用连续磨矿—强磁选工艺获得的指标相比,铁品位和铁回收率分别提高了6.83个百分点和12.68个百分点。在完成竖炉内部结构、排矿方式、焙烧工艺制度、黏结剂优化后,生产指标有望进一步提升,具有广泛的工业化前景。  相似文献   

18.
某低品位复杂难选铁矿,铁主要以褐铁矿形式存在,褐铁矿与脉石矿物紧密共生,导致强磁选精矿铁品位偏低,难以获得合格铁精矿。通过试验发现,采用高梯度强磁选预富集—流态化磁化焙烧—弱磁选工艺可以高效利用该褐铁矿,重点考察了焙烧温度、焙烧时间、还原气氛和气量,以及焙烧产品磨矿细度、磁感应强度等参数对强磁精矿磁化焙烧指标的影响。同时,详细分析了焙烧前后试样中铁物相及嵌布特征的变化情况。结果表明,针对铁品位36.58%、粒度为-0.074 mm占83.73%的强磁精矿,在焙烧温度500℃、焙烧时间15 min、还原气体CO浓度20%、总气量600 mL/min,焙烧产品磨矿细度为-0.043 mm占90%、磁场强度0.15 T的试验条件下,采用流态化磁化焙烧—弱磁选工艺,最终获得了产率59.01%、铁品位58.69%和铁回收率85.89%的铁精矿。研究结果为该类难选铁矿资源的高效利用提供了一种新的技术途径。  相似文献   

19.
鄂西高磷鲕状赤铁矿因其铁矿物嵌布关系复杂,在磁化焙烧过程中还原度难以控制,极易产生“过还 原”和“欠还原”现象。 通过磁化焙烧温度、焙烧时间、还原剂用量、磨矿细度条件试验,查明了高磷鲕状赤铁矿最佳煤 基磁化焙烧条件。 结果表明:在焙烧温度为 800 ℃ 、焙烧时间 90 min、还原剂用量 15%的条件下,使用磁选管进行选 别,可以获得铁品位 58%左右的铁精矿,铁回收率可达 90%。 磁选流程试验结果表明,对中矿进行再磨再选后,磁选 精矿铁品位提高至 59. 42%,铁回收率为 89. 23%。 研究结果为使用磁化焙烧—磁选工艺利用此类极难选铁矿提供了 理论支撑和技术参考。  相似文献   

20.
河南灵宝某黄金冶炼厂焙烧氰化尾渣TFe品位为30.71%,针对此尾渣开展了强磁预选—直接还原焙烧—弱磁选联合提铁研究。经磁场强度为1 513 kA/m的湿式强磁预选,获得TFe品位44.96%、回收率78.27%的粗精矿。当粗精矿、烟煤和氧化钙的质量比为1∶0.2∶0.2、还原温度为1 200℃、还原时间为90min时,粗铁精矿经直接还原焙烧、二段磨矿、二段弱磁选处理,获得TFe品位为92.43%、回收率为93.21%的还原铁粉,相对于氰化尾渣的产率达24.24%。该工艺为焙烧氰化尾渣中极难选含铁资源的高效利用提供了新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号