首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为获得较高的沉积速度、较大的显微硬度及较好的表面粗糙度,采用JMP定制设计器进行工艺试验设计。运用逐步逼近法分析工艺参数对沉积速度、显微硬度及表面粗糙度的影响规律,建立了回归模型,并对响应曲面进行了分析。利用期望函数法对多响应的工艺参数进行优化,确定了试验范围内达到意愿最大化的最佳工艺参数,即电压17 V、镀液温度62℃、两极间隙1.4 mm、相对运动速度142 mm/min。此工艺条件下的镀层沉积速度、显微硬度及表面粗糙度的预测值分别为57.19μm/min、725.57 HV、Ra0.256μm,实际值分别为56.03μm/min、717.09 HV、Ra0.265μm,相对误差分别为2.1%、1.2%、3.4%;且模型可靠,优化后的镀层光滑致密,质量良好。  相似文献   

2.
根据弯管冲蚀破坏处的特点,提出一种新的差异化加工工艺。利用机械手的灵活性,在弯管加工过程中改变弯管内外侧的加工间隙,实现弯管内壁的差异化研磨,提高其表面质量。结果表明:在加工时间为75 min,弯管内外侧加工间隙均为2.0 mm时,弯管外弧的内表面粗糙度从0.70 μm下降到0.34 μm,弯管内弧的内表面粗糙度从0.82 μm下降到0.32 μm;在差异化研磨时,弯管外侧加工间隙为1.5 mm,内侧加工间隙保持为2.0 mm不变,弯管外弧的内表面粗糙度从0.70 μm下降到0.26 μm,弯管内弧的内表面粗糙度从0.82 μm下降到0.29 μm。差异化研磨可有效提高弯管的内表面质量。   相似文献   

3.
利用金刚石线锯切割硅晶体的实验研究   总被引:1,自引:0,他引:1  
本文综述了脆性材料的塑性转变理论、脆性材料塑性加工研究进展情况,进行了环形金刚石线锯丝切割硅晶体的实验.锯丝单方向连续运动,因而可以提高切割速度,锯丝运动速度为10 m/s和21 m/s两种.工件进给速度分别为8.4 mm/min,12.6 mm/min和20 mm/min等三种.用扫描电镜检测切割表面并与往复式线锯切割表面进行比较.实验结果及理论分析表明:锯丝上单个磨粒切削深度极小,切割表面平整、无崩碎现象,表面粗糙度值达1.4 μm~3 μm,接近粗磨加工后的表面.进给速度增大,表面粗糙度有所增大;切削速度提高,表面粗糙度降低不明显,这与理论分析不一致,其原因是工艺系统振动、冲击所致.锯丝磨损、磨料脱落是降低切割表面质量的另一原因.  相似文献   

4.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

5.
用ABAQUS软件建立金刚石油石超精加工氧化锆陶瓷轴承沟道有限元模型,分析其加工机理,并利用金刚石油石对氧化锆轴承沟道进行超精加工,获取超精加工后沟道表面粗糙度及表面形貌,研究超精加工应力对氧化锆轴承沟道表面质量的影响。结果表明:工件切线速度由150 m/min增加到450 m/min,表面应力减小,表面粗糙度值由0.091 2 μm下降到0.059 3 μm,随后增大;油石压力由0.2 MPa增加到0.8 MPa,表面应力增大,表面粗糙度值由0.194 2 μm下降到0.032 2 μm;当金刚石油石的长、短行程摆动速度增加,轴承沟道表面应力增大,其表面粗糙度值分别由0.071 6 μm增加到0.085 8 μm和0.062 7 μm增加到0.100 8 μm。适当提高工件切线速度、油石压力、长行程摆荡速度,降低短行程振荡速度有助于改善加工质量。   相似文献   

6.
采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为n,ap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。   相似文献   

7.
对化学气相沉积(CVD)多晶金刚石膜进行激光平整化的正交试验,使用场发射环境扫描电子显微镜(SEM)进行形貌分析,激光共聚焦扫描显微镜测量线粗糙度Ra、面粗糙度Sa和切缝锥度,分析激光参数对CVD膜平整化的影响。结果表明:影响切缝锥度的因素依次为脉冲宽度、脉冲频率、进给速度和激光电流,影响线粗糙度Ra的因素依次为进给速度、激光电流、脉冲频率、脉冲宽度。正交试验优化后,当激光电流为64 A、脉冲宽度为400μs、脉冲频率为275 Hz、进给速度为100 mm/min时,可获得最佳的切槽表面形貌。采用该优化参数进行面扫描,测得面粗糙度Sa为11.7μm;进一步增加入射角度至75°时,面粗糙度Sa降低至1.9μm,实际去除效率达到1.1 mm3/min。  相似文献   

8.
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

9.
本试验使用石墨白刚玉砂轮精密磨削铁氧体,可实现简化工艺的目的。实验结果表明:在磨削速度24 m/s、工件速度1~10 m/min、切深2.5~7.5 μm的普通磨削工艺条件下,铁氧体零件的表面粗糙度值均达到Ra 0.18 μm以下。最小的表面粗糙度值可以达到Ra 0.09 μm,磨削表面呈镜面。因此,该磨削工艺可以完全满足铁氧体零件的表面加工质量要求。   相似文献   

10.
在氧化锆陶瓷磨削中为获得较高质量表面,采用单因素试验研究磨削深度、砂轮线速度、工件进给速度对氧化锆陶瓷精密磨削表面质量的影响规律及材料去除机理,通过超景深三维显微镜以及扫描电子显微镜,观察氧化锆陶瓷试件磨削后的表面形貌,最后用正交试验法进行优选并验证。结果表明:磨削表面的粗糙度随磨削深度、工件进给速度增大而增大,随砂轮线速度增大先减小、后增大。在磨削深度5 μm、砂轮线速度40 m/s、工件进给速度1 000 mm/min的优化组合条件下,磨削3组氧化锆陶瓷的平均表面粗糙度Ra为0.388 9 、0.417 0和0.403 7 μm。   相似文献   

11.
薛燕  王振国 《表面技术》2017,46(7):91-96
目的提高镁合金的耐蚀性和耐磨性。方法以AZ91D镁合金为基体,采用SiC颗粒质量浓度为3 g/L的Ni-P化学镀溶液,在其表面沉积不同时间,制备Ni-P-SiC复合镀层。通过扫描电子显微镜(SEM)、显微硬度测试、粗糙度仪、电化学腐蚀和磨损等试验来分析和评价Ni-P-SiC复合镀层的厚度、表面粗糙度、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层的厚度和表面粗糙度随沉积时间增加而增加,沉积时间为150 min时,镀层厚度可达53μm,表面粗糙度为2.5μm。沉积时间为120 min时,镀层的显微硬度最高,为641HV,此时复合镀层的耐蚀性和耐磨性最好,自腐蚀电位高达-0.73 V,腐蚀电流密度为0.78μA/cm~2,磨损体积最小,为1.04×10~(-3)mm~3。与AZ91D镁合金基体相比,沉积复合镀层后的样品更耐蚀,说明复合镀层有效改善了镁合金基体的耐蚀性。结论沉积时间对Ni-P-SiC复合镀层的性能有一定影响,在沉积时间为120 min时获得的复合镀层具有较好的耐蚀性和耐磨性。  相似文献   

12.
用PCD铣刀平面精铣TC4(Ti-6Al-4V)钛合金,再用三坐标测量机、表面粗糙度仪、显微维氏硬度计和便携式X射线残余应力分析仪测量钛合金加工后的平面度、平行度、表面粗糙度、表面硬度及表面残余应力,分析不同铣削工艺参数对TC4钛合金质量和表面形貌的影响。结果表明:在主轴转速16 000 r/min,切削深度0.2 mm,每齿进给量0.06 mm/z的最佳铣削工艺参数下,PCD铣刀寿命较长,TC4钛合金工件的表面质量和形貌较好,其平面度为0.26 μm,平行度为0.64 μm,表面粗糙度为0.63 μm,表面显微硬度为3 080 N/mm2,表面残余应力为-250 MPa。   相似文献   

13.
为优化圆柱滚子外圆研磨,以正交试验研究工件偏角、工件位置及转速(包括上下抛光盘转速、偏心轮转速和外齿圈转速)对材料去除率、表面粗糙度和圆度的影响。结果表明:工件偏角对材料去除率的影响最显著,转速组合次之,工件位置最小;转速对表面粗糙度的影响最显著,工件偏角次之,工件位置最小;工件位置对圆度的影响最显著,转速组合次之,工件偏角最小。最佳条件为工件偏角0°、工件位置0.8,各转速值分别为-76、84、80和48 r/min。加工15 min后,圆柱滚子的材料去除率可达到0.541 μm/min;表面粗糙度由0.078 μm降至0.045 μm,比初始表面粗糙度降低42.3%;圆度由0.74 μm降至0.41 μm,比初始圆度降低44.6%。   相似文献   

14.
为提高蓝宝石基片的研磨效率和质量,研制2种不同硬度的陶瓷结合剂固结金刚石研磨丸片并制作了相应的研磨盘,对蓝宝石基片进行研磨工艺试验以评估其研磨性能.结果表明:研磨时间延长,蓝宝石的材料去除率(R MRR)和表面粗糙度(R a)均逐渐降低最后趋于稳定;研磨盘转速提高,2种研磨盘获得的工件材料去除率均先升高后降低,在研磨盘...  相似文献   

15.
目的为满足安全阀阀座与阀瓣配合面密封要求,提高安全阀密封面磨削修复质量和效率,阀座和阀瓣表面粗糙度Ra≤0.1μm。方法在正交实验的基础上,采用Al_2O_3砂纸、白刚玉研磨膏为磨削介质,研究了磨粒细度、磨削时间、磨削转速、磨削压力对密封表面粗糙度和磨削量的影响,使用粗糙度测量仪、千分尺、电子显微镜对阀座和阀瓣的表面粗糙度、磨削量、表面形貌进行测量分析。以磨削量和表面粗糙度为评价指标,得到最佳工艺参数,并通过多组重复性实验验证实验结果的可靠性。结果在最佳磨削工艺参数下,砂纸研磨阀座和阀瓣的磨削量为0.023 mm,表面粗糙度为0.135μm,研磨膏抛光阀座和阀瓣的表面粗糙度为0.073μm。结论砂纸研磨最佳工艺参数:研磨压力80 N,研磨转速80 r/min,研磨时间10 min,砂纸细度1000目。研磨膏抛光最佳工艺参数:抛光压力30 N,抛光转速100 r/min,抛光时间10 min。采用砂纸、研磨膏磨削修复工艺,可以提高磨削量,降低表面粗糙度,提高了安全阀磨削后的密封性能。  相似文献   

16.
陶瓷轴承套圈的加工质量对轴承的回转精度和服役性能具有重要影响.首先,基于大量外圆磨削试验,通过最小二乘法分别建立陶瓷表面粗糙度和沟道圆度在不同工艺参数下的一元模型;其次,在一元模型基础上,通过粒子群优化算法(PSO算法)分别建立其表面粗糙度和沟道圆度在不同工艺参数下的多元模型;最后,通过PSO算法对表面粗糙度和沟道圆度...  相似文献   

17.
基于和田玉特殊的物理性能,采用直径为2、1.5、1 mm的高速钢麻花钻,在其主轴转速为700、1500、1800r/min;进给量为3μm/r和5μm/r的情况下;分别进行附加超声波振动和不附加超声波振动加工试验;在钻削加工过程刀具磨损,扩孔量、孔内表面粗糙度三个方面进行对比分析,超声振动波钻削能获得更好的加工质量和效率,并能减少钻头的磨损和破坏,为和田玉精密加工提供了一种新的深孔加工工艺方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号