共查询到14条相似文献,搜索用时 62 毫秒
1.
流形学习是一种新的非监督学习方法,可以有效地发现高维非线性数据集的内在维数并进行维数简约。本文基于流形学习技术的研究,针对在手写字符识别中由于书写习惯和风格的不同造成字符模式不稳定的问题,提出了一种基于流形学习的手写体数字识别方法。并在原有流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构的同时,也进一步分离了不同类别的流形。算法首先利用基于监督的局部线性嵌入(SLLE)对手写体数字图像进行字符特征的降维,然后再对降维后的特征进行分类识别。通过对MINST库中手写体数字数据库上的实验结果表明,利用SLLE降维以后的特征能够有效地区分字符,具有较好的识别率,能够发现高维空间的低维嵌入流形,识别率达到93.27%,为手写体数字识别的研究提供了一条有效的新途径。 相似文献
2.
针对机械设备齿轮箱故障识别难度较大,且采集的信号通常受到强背景噪声干扰等问题,提出一种将连续变分模式分解(SVMD)和监督局部线性嵌入(SLLE)相结合的算法,用于机械设备齿轮箱的故障诊断。首先通过SVMD对采集到的振动信号进行分解,得到特定的期望模式分量;然后再获取这些分量的类标签信息,并利用这些类标签信息来缩放不同类别分量间的欧几里德距离;最后通过SLLE对这些处理后的样本数据进行降维处理,从而准确识别机械设备齿轮箱的故障类型。通过对模拟仿真信号和从齿轮箱故障模拟实验平台采集到的振动信号进行分析,聚类识别的正确率可以达到95.27%,验证了所提出方法的可行性。 相似文献
3.
模式分类器在手写体数字识别中的应用比较研究 总被引:1,自引:0,他引:1
贝叶斯分类器、线性分类器和K近邻分类器是模式识别中三种典型的模式分类器.比较三种分类器在识别手写阿拉伯数字过程中的性能优缺点,进一步对识别数据进行详尽的分析挖掘,通过对算法精确度、识别速度及计算存储需求等方面的比较,深入探讨三种监督式分类器的差异和特点,最终得到不同的分类结果,从而寻求最优化的决策方案. 相似文献
4.
5.
贝叶斯分类器、线性分类器和K近邻分类器是模式识别中三种典型的模式分类器.比较三种分类器在识别手写阿拉伯数字过程中的性能优缺点.进一步对识别数据进行详尽的分析挖掘.通过对算法精确度,识别速度及计算存储需求等方面的比较,深入探讨三种监督式分类器的差异和特点.最终得到不同的分类结果,从而寻求最优化的决策方案. 相似文献
6.
基于有监督的核局部线性嵌入的面部表情识别 总被引:1,自引:0,他引:1
流形学习方法可以有效的发现存在于高维图像空间的低维子流形并进行维数约简,近年来越来越受到生物特征识别和认知科学领域的研究者的重视。但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,而且流形学习方法大多没有明晰的投影矩阵,很难直接对新样本进行维数约简。针对这两个问题,本文提出一种新的有监督的核局部线性嵌入算法(supervisedkernellocallinearembedding,SKLLE),并将算法应用于面部表情识别。该算法通过非线性核映射将人脸图像样本投影到高维核空间,然后将人脸图像局部流形的结构信息和样本的类别信息进行有效的结合进行维数约简,提取低维鉴别流形特征用于表情分类。SKLLE算法不仅能发现嵌入于高维人脸图像空间的低维表情子流形,而且增强了局部类间的联系,同时对新样本有较好的泛化性,实验结果表明该算法能有效的提高面部表情识别的性能。 相似文献
7.
流形学习方法可以有效的发现存在于高维图像空间的低维子流形并进行维数约简,近年来越来越受到生物特征识别和认知科学领域的研究者的重视。针对局部线性嵌入(Locallinearembedding,简称LLE)流形学习算法存在的问题,本文提出了一种自组织LLE算法(Self-OrganizedLLE,简称SO-LLE),该算法不仅能自动确定数据点邻域选择、减少运算量,而且能有效的发现嵌入于高维人脸图像的低维子流形。本文对SO-LLE算法进行了详细的理论分析,并应用各种数据集进行了仿真实验和分析。在公开的人脸数据库上的仿真实验结果表明,该方法能有效的提高人脸识别的性能。 相似文献
8.
基于分维LLE和Fisher判别的故障诊断方法 总被引:1,自引:0,他引:1
针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的分布完成故障的检测,在这个过程中将超球的确定与LLE算法中基于核函数的样本外数据扩展结合起来,大大减少了计算量,提高了算法的实时性。然后,利用Fisher判别分析进行故障匹配,通过计算最优的投影向量与历史故障数据投影向量的相似度的计算,完成故障识别,从而为复杂非线性系统故障诊断提供了一种新的有效的方法。 相似文献
9.
针对故障特征集维数过高的问题,提出一种基于局部边缘判别投影(locality margin discriminant projection,简称LMDP)的故障数据集降维算法.该算法定义了局部类间相似度和局部类内相似度,使相邻的异类在低维空间中离的更远、相邻的同类样本在低维空间中离的更近.分别提取转子振动信号的时域和频... 相似文献
10.
马维金;张琳;张纪平;黄彬城;罗朝阳 《机械传动》2015,39(8):111-114
流形学习算法是一种非线性的数据降维方法,可以获得数据的低维几何结构,能很好的体现系统的本质。为了提高齿轮变速箱振动故障信号的可分性,应用流形学习方法对齿轮变速箱振动信号进行故障特征提取。研究结果表明,流形学习方法可以有效地提取齿轮变速箱振动故障的特征信息,并能有效区分不同故障类型的特征信息。运用流形学习方法进行故障特征提取后的诊断结果与时域统计特征提取方法相比,提高了故障诊断的正确率。 相似文献
11.
一种基于配对矩阵改进的LE分类算法 总被引:4,自引:0,他引:4
拉普拉斯特征映射(LE)算法基于流形学习思想将原始数据映射到低维空间,然而其无法解决样本外点学习问题,更没有使用类别信息.针对这些实际应用问题提出了一种新的基于配对矩阵的拉普拉斯特征映射(PM-LE)算法.PM-LE的目标是使得高维空间中的“相似点”投影到本征低维空间后为近邻点,同时该算法引入类别信息帮助构建近邻图,并且利用最大化相似矩阵及其配对矩阵内积的算法来重新计算权值矩阵,从而更适合应用于分类问题.应用于人脸识别的实验结果证明,PM-LE算法能很好地完成实际的降维和分类任务. 相似文献
12.
13.
14.
稀疏保持投影(SPP)是一种基于l1图的新型降维算法,它利用样本间的稀疏重构关系建图,但是SPP为非监督算法,分类效果受到限制。针对此问题,本文提出了一种新的稀疏流形学习算法-稀疏鉴别嵌入(SDE)。该算法在利用样本的稀疏重构关系建图时引入了样本的类别信息,并通过优化目标函数来得到投影矩阵,使得不同类的数据点在低维嵌入空间中尽可能地分散开。SDE通过结合数据稀疏性及类间流形结构的优点,不仅保留样本间的稀疏重构关系,而且通过引入训练样本的类别信息实现稀疏鉴别特征提取,更有利于分类。在Urban和WashingtonDCMall数据集上的实验结果表明:SDE算法比其他算法的分类性能有明显的提升,在每类随机选取16个训练样本的情况下,SDE算法的分类精度分别达到了73.47%和98.35%。 相似文献