首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了提高人脸识别效率,提出了一种基于PCA、LDA和SVM算法融合的人脸识别方法。使用主成分分析(PCA)将人脸图像变换到新的特征空间中,消除图像特征间的相关性和噪声,提取人脸全局特征,在实验阶段取较多的投影方向使其尽可能多的保持原始信息;使用线性判别分析(LDA)算法进一步投影变换降低数据维度;使用支持向量机(SVM)分类识别。将PCA、LDA和SVM三种算法的优点结合起来,在ORL数据库上进行仿真实验,结果表明该方法的识别率可达99.0%。  相似文献   

2.
融合PCA与LDA变换的仿生人脸识别研究   总被引:2,自引:1,他引:2       下载免费PDF全文
就基于PCA与LDA变换的传统人脸识别方法识别率低但特征提取过程中维数低和基于K-L 变换的仿生人脸识别方法识别率高但在特征提取过程中维数过高的的问题,将两者的优点相结合,提出了一种基于PCA与LDA变换的仿生人脸识别新方法。通过PCA与LDA变换对训练人脸样本进行特征提取,然后构建各类样本的覆盖区域。再通过判断待识别人脸特征在各覆盖区域的归属情况来识别人脸。实验收到了预期的效果,证明了方法的可行性。  相似文献   

3.
基于分块PCA的人脸识别方法   总被引:3,自引:0,他引:3  
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法.  相似文献   

4.
为了进一步研究人脸识别问题文章融合HOG特征与PCA算法对人脸进行识别研究。首先计算人脸图像的方向梯度直方图(HOG),将输出的每一个特征向量纵向堆叠为一个二维矩阵。然后使用主成分分析(PCA)进行特征降维,减少特征间的相关性和噪声。最后使用支持向量机(SVM)进行分类识别。整个算法模型在ORL人脸数据库中进行实验,最终结果显示识别准确率为96.0%;使用ROC曲线评价该方法的优劣得到曲线下的面积为0.9898。  相似文献   

5.
提出了一种新的小波域主元分析与线性辨别分析相结合的红外人脸识别方法。首先通过DWT将红外人脸图像通过二级小波分解成七个子带,舍去两次分解中的对角子带,对剩下的五个子带进行有效的组合;然后用PCA方法对组合后的向量进行特征提取,再把PCA提取的特征向量进行线性辨别分析;最后用欧氏距离和三近邻分类器得到分类结果。同传统的PCA和PCA LDA的方法相比,该方法更能利用人脸图像的有用判别信息,并得到更好的识别效果。  相似文献   

6.
主分量分析(PCA)和线性鉴别分析(LDA)是模式识别领域的使用最为广泛的两种特征抽取方法,而在图像识别中经常采用的是PCA LDA方法来代替单纯的LDA。本文提出一种增强型线性鉴别准则(ELDA),将PCA的优点和LDA的优点充分地融合在一起,不仅解决了PCA过程中使用最小距离方法时识别精度相对低的缺点,而且解决了LDA过程中当类内散布矩阵奇异时投影向量的求解问题,也就是说可以使用该方法来替代PCA LDA的两步骤方法。另外,该方法在识别精度上比PCA和LDA或PCA LDA方法都有较大的提高,通过在ORL、Yale和NUST603人脸库上的实验验证了该算法的有效性。  相似文献   

7.
为了提高人脸识别的识别率,本文提出了一种基于直方图均衡化、PCA和SVM算法的人脸识别。首先将人脸图像进行直方图均衡化,这样可以很好的增强图像的对比度。然后使用主成分分析(PCA)对图像进行降维和特征提取,可以减少图像识别的计算量,有效的提高识别的效率。最后,再用支持向量机(SVM)进行分类识别。在ORL人脸数据库上进行了使用验证,表明该方法能提高人脸识别的识别率。  相似文献   

8.
基于环形对称Gabor变换和PCA加权的人脸识别算法   总被引:3,自引:0,他引:3  
环形对称Gabor变换不但具有Gabor小波的一般特性,而且具有信息冗余度小、严格的旋转不变性等优点.文中提出一种基于环形对称Gabor变换和PCA加权特征的人脸识别算法.首先将人脸图像变换到环形对称Gabor变换域,然后在变换域采用PCA加权方法提取分类特征.在3个人脸库上进行实验,与传统人脸识别算法的对比实验说明该算法的可行性和对光照、姿态变化具有更好的鲁棒性.  相似文献   

9.
基于HOG多特征融合与随机森林的人脸识别   总被引:1,自引:0,他引:1  
郭金鑫  陈玮 《计算机科学》2013,40(10):279-282
针对人脸识别在复杂环境下识别率低的问题,提出了一种基于梯度直方图(HOG)多特征融合与随机森林的人脸识别方法.该方法通过HOG特征描述子对人脸进行特征提取.首先以网格作为采样窗在整个人脸图上进行整体HOG特征的提取,并将人脸图像分成均匀子块,在包含有人脸关键部分的子块中提取局部HOG特征.然后通过二维主成分分析(2DPCA)和线性判别分析(LDA)对整体和局部特征进行降维,并进行特征层融合形成最终分类特征,最后通过随机森林分类器对其进行分类.FERET人脸库、CAS-PEAL-R1人脸库、真实场景人脸库实验表明,该方法对光照具有鲁棒性,且有较高的识别率和较短的识别时间.  相似文献   

10.
改进的模块PCA人脸识别新算法   总被引:2,自引:0,他引:2  
由于传统的PCA要求训练样本符合高斯分布,而现实中得到的图片往往由于光照、表情、姿态的不同,不符合高斯分布。为了使PCA不再局限于高斯分布,并且不影响其识别率,提出一种改进的模块PCA人脸识别新算法。一方面,新算法采取了分块方式,将具有同一姿态的图片划分进同一矩阵,以使训练样本更接近于高斯分布。另一方面,新算法对传统PCA算法中前三个主分量加小于1的权重系数,可以减少光照变化对识别率的影响。利用分块和权重系数的共同作用使得PCA不再局限于高斯分布,同时提高识别率。最后在ORL人脸库上进行实验,结果表明新算法优于传统的PCA算法。  相似文献   

11.
基于改进的PCA算法和Fisher线性判别的人脸识别技术   总被引:10,自引:0,他引:10  
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和F isher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果.  相似文献   

12.
樊春玲  陈秀霆 《控制工程》2012,19(4):712-715
在现代社会当中,身份认证与识别问题变得尤为重要。其中,基于人脸面部特征的识别技术因其具有的突出优点脱颖而出,得到了广泛研究与应用。考虑到当前人脸识别技术遇到的相关难点,寻求了一种主成分分析(PCA)和线性判别分析(LDA)相结合的方法对人脸进行识别,并且基于LabVIEW/Matlab和摄像采集系统等软硬件设备,设计了人脸识别系统。该系统以人脸识别算法为基础,利用PC机为操作平台,通过将即时采集的人脸图像与所建立的人脸特征库比对,从而快速有效地查出已登记人员的身份信息。  相似文献   

13.
基于改进型PCA和LDA融合算法的人脸图像识别   总被引:3,自引:0,他引:3  
研究提高人脸识别率问题,因人脸图像易受光照条件、人脸丰富的表情变化以及周围复杂环境干扰等因素的负面影响,导致其识别准确度很低,影响其识别效果。鉴于此,提出了改进型PCA和LDA融合算法人脸图像识别方法,首先通过在改进PCA算法中结合基于标准差和局部均值的图像增强处理,使其可以有效调节光照不均匀对人脸识别所造成的负面影响,进而拓展了PCA算法的应用条件范围,然后将改进的PCA算法与LDA算法相结合,运用改进的PCA算法对训练图像降维,最后再对降维以后的特征采用LDA算法,训练出一个最具判别力的分类器,实验证明本文提出的方法对光照不均匀、表情变化的人脸具有一定的鲁棒性,具有很好的人脸识别性能,提高了其识别率,优于一般的PCA算法。  相似文献   

14.
基于改进LDA算法的人脸识别   总被引:1,自引:0,他引:1  
提出一种基于改进LDA的人脸识别算法,该算法克服传统LDA算法的缺点,重新定义样本类间离散度矩阵和Fisher准则,从而保留住最有辨别力的信息,增强算法的识别率.实验结果证明该算法是可行的,与传统的PCA LDA算法比较,具有较高的识别率.  相似文献   

15.
对人脸识别进行研究,将基于主要成分分析的图像训练算法用于人脸识别中,并运用最近邻分类器欧几里德距离对处理了的人脸图像集进行分类,设计一套基于PCA的人脸识别考勤系统,并运用到公司的考勤实践当中去。实践结果表明,该套系统的识别率维持在90%以上。  相似文献   

16.
基于图像压缩思想及实际应用的考虑,提出一种基于血流图DCT域PCA和FLD相结合的红外人脸识别方法.根据生理学知识及生物力学的原理,把人脸的温谱图转换成血流图,通过DCT变换对人脸图像进行压缩,使变换域的能量集中在低频分量附近,从而减小了数据量,用主成分分析(PCA)和Fisher线性辨别分析(FLD)来提取人脸特征,通过三近邻分类器得到最终的识别结果.实验结果表明,本文的方法可以节省大量的存储空间和减小算法运算时间,并且在小样本集的情况下,也能取得较好的识别性能.  相似文献   

17.
人脸识别是模式识别的一个重要分支,主要由特征提取和分类识别两个阶段决定,由于其小样本,高维数的特点,传统的分类器容易导致过学习问题,首先使用主成分分析法对人脸图像进行降维表示,然后将最小二乘支持向量机用于识别阶段,仿真实验显示的方法取得了较好的识别效果和识别效率。  相似文献   

18.
人脸识别是计算机视觉和图像模式识别领域的一个重要技术。主成分分析(PCA)是人脸图像特征提取的一个重要算法。而支持向量机(SVM)有适合处理小样本问题、高维数及泛化性能强等多方面的优点。文章将两者结合,先用PCA算法进行人脸图像特征提取,再用SVM进行分类识别。通过基于ORL人脸数据库的计算机仿真实验表明,该方法具有很好的可行性和实际意义。  相似文献   

19.
人脸识别是以人脸为基本识别特征的识别技术.并成为研究的热点。PCA算法是人脸识别中使用最多的算法之一。它具有速度快.识别率高等优点。单纯的PCA方法对于光照比较敏感,算法对于光照的鲁棒性不强。通过对图片的归一化,平滑处理,直方图均衡化等一系列的预处理手段.增强PCA算法对于光照的鲁棒性。实验表明,通过优化能够提高识别的成功率.达到优化的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号