首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ influx through glutamate receptors (GluRs) is thought to play a crucial part in developmental processes and neuronal plasticity. Here we have examined the spatiotemporal distribution of Ca2+-permeable GluRs in auditory brainstem neurons of the rat from birth to adulthood, using the cobalt-staining technique of Pruss and collaborators. In slices of young adult rats, 1 mM glutamate evoked intense cobalt uptake in subsets of neurons in the ventral cochlear nuclei, the medial nucleus of the trapezoid body, the lateral and the medial superior olive, and the lateral lemniscal nuclei. Neurones in the central nucleus of the inferior colliculus, and thalamic auditory nuclei appear to express few, if any, Ca2+-permeable GluRs. Thus, in adults, Ca2+-permeable GluRs are present in neurons of almost all main relay stations of the auditory brainstem. During development, cobalt-stained cells first appeared at about hearing onset (at postnatal day 12 [P12]). At P16, staining levels were highest and the pattern of distribution was already adult-like. The staining intensity slightly declined during the fourth postnatal week. In contrast, Ca2+-permeable receptors were detected in the external cortex of the inferior colliculus as early as P4. Our results show that auditory neurons, characterized by a high temporal precision in neuronal activity, display Ca2+-permeable GluRs. Because Ca2+ permeability appears at about the onset of hearing and is highest during the following 2 weeks, Ca2+ influx through GluRs is likely to be implicated in remodelling processes occurring during this ontogenetic period.  相似文献   

2.
3.
Neurotransmitter transporters are involved in termination of the synaptic neurotransmission and are implicated as the sites of action of antidepressant medicines and illicit drugs. In addition to their function in neurotransmission, neurotransmitter transporters play a key role in neuroregulation and brain development. In this report, the developmental distribution of the "orphan" transporter NTT4, whose substrate has not yet been shown, is described. Immunohistochemical studies have previously shown NTT4 to be specifically and widely localized to the central nervous system. In this report, the distribution of NTT4 in brain areas enriched in glutamatergic and gamma-aminobutyric acid-ergic innervations is further substantiated. NTT4 is detected beginning at E18 in various parts of the rat brain, including the cerebral cortex, fimbria hippocampi, fornix, lateral lemniscus, anterior commissure, and spinal cord. At E18, strong immunoreactivity of NTT4 is observed in the cortical subplate and marginal layers that later develops into the fimbria hippocampi, and at P22, the expression of NTT4 in the hippocampal formation reaches the mature form. The expression of NTT4 in the spinal cord begins at E18 in the ventral white matter. Heavy staining for NTT4 is observed in the substantia nigra since birth and through all time points examined. Transient immunoreactivity is observed in the inferior colliculus, reaching maximal expression at P10, whereas the superior colliculus commences to express NTT4 only after this time point. The globus pallidus is highly stained after birth, and the caudate putamen shows strong staining for NTT4 only at P22. In the adult rat brain, NTT4 is strongly expressed in the olfactory bulb, cerebral cortex, striatum, hippocampus, thalamus, substantia nigra, pontine nucleus, cerebellum, and spinal cord. The developmental distribution of NTT4 suggests involvement in central nervous system maturation.  相似文献   

4.
The time course of ingrowth of retinal projections to the superior colliculus in the marsupial mammal, the wallaby (Macropus eugenii), was determined by anterograde labelling of axons from the eye with horseradish peroxidase, from birth to 46 days, when axons cover the colliculus contralaterally and ipsilaterally. The position of retinal ganglion cells giving rise to these projections over this period was determined in fixed tissue by retrograde labelling from the colliculus with a carbocyanine dye. Axons first reach the rostrolateral contralateral colliculus 4 days after birth and extend caudally and medially, reaching the caudal pole at 18 days and the far caudomedial pole at 46 days. The first contralaterally projecting cells are in the central dorsal and temporal retina, followed by cells in the nasal and finally the ventral retina. They are distributed closer to the periphery with increasing age. The first sign of a visual streak appears by 18 days. Axons reach the ipsilateral colliculus a day later than contralateral axons and come from a similar region of the retina. The sparser ipsilateral projection reaches the caudal and medial collicular margins by 46 days but by 16-18 days, ganglion cells giving rise to this transient projection are already concentrated in the temporoventral retina. The orderly recruitment of ganglion cells from retinotopically appropriate regions of the retina as axons advance across the contralateral colliculus suggests that the projection is topographically ordered from the beginning. The ipsilateral projection is less ordered as cells are located in the temporoventral crescent at a time when their axons are still transiently covering the colliculus prior to becoming restricted to the rostral colliculus. Features of mature retinal topography such as the visual streak and the location of ipsilaterally projecting cells begin to be established very early in development, before the period of ganglion cell loss and long before eye opening at 140 days.  相似文献   

5.
To establish a possible correlation between the rate of cellular proliferation and already documented functional and morphological characteristics of the rat pineal gland during postnatal development, the bromodeoxyuridine labelling method was used to evaluate the fraction of cells at the S phase of the cell cycle in paraffin sections from 1-, 7-, 14- and 28-day-old rats. Numerical density, taken as an indirect measure of cell hypertrophy, was also evaluated. During the first week after birth the percentage of S phase-cells in the rat pineal gland sharply decreased from around 9% to 1.3%. A smaller but also significant decrease was found from the 7th to the 14th postnatal day where S phase cells were less than 0.5% of all pineal cells. A very low percentage was also seen in samples from 28-day-old rats. Numerical density, namely, the total number of cells per surface unit of pineal section, decreased from birth to the end of the first month. This decrease was also steeper from birth to the 7th postnatal day than at any other period of the study. These results support the idea that a strong expansion of the cellular population of the rat pineal gland precedes morphological and functional maturation and opens the way to further exploration of the relationship between functional and proliferative responses of the pineal gland.  相似文献   

6.
The development of multisensory neurons and multisensory integration was examined in the deep layers of the superior colliculus of kittens ranging in age from 3 to 135 d postnatal (dpn). Despite the high proportion of multisensory neurons in adult animals, no such neurons were found during the first 10 d of postnatal life. Rather, all sensory-responsive neurons were unimodal. The first multisensory neurons (somatosensory-auditory) were found at 12 dpn, and visually responsive multisensory neurons were not found until 20 dpn. Early multisensory neurons responded weakly to sensory stimuli, had long latencies, large receptive fields, and poorly developed response selectivities. Most surprising, however, was their inability to integrate combinations of sensory cues to produce significant response enhancement (or depression), a characteristic feature of the adult. Responses to combinations of sensory cues differed little from responses to their modality-specific components. At 28 dpn an abrupt physiological change was noted. Some multisensory neurons now integrated combinations of cross-modality cues and exhibited significant response enhancements when these cues were spatially coincident and response depressions when the cues were spatially disparate. During the next 2 months the incidence of multisensory neurons, and the proportion of these neurons capable of adult-like multisensory integration, gradually increased. Once multisensory integration appeared in a given neuron, its properties changed little with development. Even the youngest integrating neurons showed superadditive enhancements and spatial characteristics of multisensory integration that were indistinguishable from the adult. Nevertheless, neonatal and adult multisensory neurons differed in the manner in which they integrated temporally asynchronous stimuli, a distribution that may reflect the very different behavioral requirements at different ages. The possible maturational role of corticotectal projections in the abrupt gating of multisensory integration is discussed.  相似文献   

7.
To determine if functional alterations in the superior colliculus might account for recovery of visual behaviors following visual cortex removal in infant cats, the receptive field characteristics of single units in the superior colliculus of cats whose visual cortex was removed within the first week of life were compared with those of cats which sustained visual cortex lesions in adulthood and with those of normal cats. In the normal superior colliculus, 90% of all cells responded to moving stimuli irrespective of shape or orientation. Sixty-four percent of these units were directionally selective, responding well to movement in one direction but poorly or not at all to movement in the opposite direction. Ninety percent of units were binocular, the vast majority of these responding equally to stimulation of either eye or showing only slight preference for stimulation of the contralateral eye. Responses to stationary flashes of light were observed in only 33% of all visually activated cells in the normal superior colliculus. After visual cortex ablation in adult cats, only six percent of movement sensitive cells were directionally selective. Binocular preference was shifted following adult visual cortex lesions such that sixty percent of all cells responded exclusively or predominantly to stimulation of the contralateral eye. Seventy-one percent of all visually responsive units responded to stationary lights flashed on or off within their receptive field boundaries. Lesions limited primarily to area 17 had the same effect as larger lesions of visual cortex. Infant visual cortex lesions resulted in receptive field alterations similar to those observed after adult ablation. Only fifteen percent of motion sensitive units were directionally selective. Seventy-one percent responded exclusively or predominantly to stimulation of the contralateral eye. Seventy-six percent of visually responsive cells were activated by stationary light. Lesions largely confined to area 17 produced the same alterations as more extensive lesions of visual cortex. Thus, no evidence was found that the superior colliculus is involved in the functional reorganization presumed to occur following visual cortex ablation in infant cats. Recovery of visual behaviors following neonatal injury may therefore not involve alterations in the receptive fields of single cells.  相似文献   

8.
9.
1. In cats anesthetized with chloralose, responses of medial pontomedullary reticular neurons to stimulation of the body surface, vestibular nerves, superior colliculi, pericruciate cortices, cerebral peduncles, and spinal cord were studied at different stimulus rates. Raising the rate from 1/10 s to between 1/4 s and 2/s caused a significant decrement or increment in the response of most neurons tested. Response decrement typically began near the beginning of the higher frequency stimulus sequence and increased throughout the sequence. Response increment usually began somewhat later, rose to a peak, and then declined. Recovery from response decrement or increment usually occurred within 30-60 s at a 1/10 s stimulus rate.2. Measurements of response latency and of changes occurring in the initial and longer latency portions of responses indicated that all components of a response typically decreased or increased in parallel. Background spontaneous activity did not change during response decrements, but sometimes increased during response increment.3. Where changes could be detected, response decrement usually developed more rapidly when a sequence of repetitive stimulation was repeated.4. Response decrement was most pronounced at the highest stimulation rates and lowest stimulus intensities. Response increment was usually maximal at a stimulus rate of 1/s: at lower rates less increment occurred; at higher rates responses began to exhibit decrement.5. Response changes varied with the type of stimulus applied. Response decrements predominated when the body surface, vestibular nerves, or ipsilateral superior colliculus were stimulated. Approximately equal amounts of response increment and decrement were produced by repetitive stimulation of the cerebral peduncles and contralateral superior colliculus. Stimulation of the surface of the pericruciate cortex or of the spinal cord usually produced a long-lasting response increment.6. Generalization of response decrement and increment was observed in cases where trains of stimuli at a rate of 2/s applied to one point produced changes in the response to stimulation of another point which was tested once per 10 s and where single-shock stimulation of the first point was without effect on the test response. Generalization of response decrement occurred most often when two nearby points were stimulated. Generalization of response increment appeared to spread widely between distant cutaneous points and stimuli of different kinds.7. The response decrement and increment observed in medial pontomedullary reticular neurons displayed most of the parametric features of behavioral habituation and sensitization (8, 33) and therefore appear to represent neural analogs of these latter phenomena. The properties of response decrement suggest that it may occur to a large extent within afferent pathways leading to medial reticular neurons...  相似文献   

10.
Proposes a physiological explanation of infants' early visual development based on recent evidence that the cat's visual system contains at least 3 separate pathways that subserve different functions and develop at different rates. Several lines of evidence suggest the same is true in humans. Data from human newborns suggest that at birth, 2 of these pathways (the X-pathway to the cortex and the Y-pathway directly to the superior colliculus and pretecturm) are functional, but that the third, the Y-pathway to the cortex, is not. Striking changes at 2 mo appear to reflect the dawning influence of that Y-pathway to the cortex. (French abstract) (5 p ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
1. The response characteristics of visual, somatosensory, and auditory neurones in the golden hamster's superior colliculus were investigated.2. As has been noted for other mammalian species, a distinct difference between the functional organizations of the superficial and deeper layers of the superior colliculus was observed.3. Neurones in the superficial layers were exclusively visual, with small receptive-fields, and generally did not show response decrements with repeated stimulation. The sizes of the receptive-fields did not vary appreciably as a function of retinal eccentricity.4. In the deeper layers, visual receptive-fields were large, or could not be accurately delimited, and response habituation was often evident. In addition, many cells in the deeper layers of the colliculus responded only to somatosensory stimuli. Far fewer cells, which appeared to be confined to the caudal portions of the colliculus, responded to auditory stimuli. Polymodal cells were also encountered.5. Selectivity to opposing directions of movement was tested for ninety-four visual cells. Using a ;null' criterion, 27.7% of these cells were judged to be directionally selective. A distribution of the preferred directions of these cells showed a significant preference for movement with an upper-nasal component. With a statistical criterion, 60.6% of these cells were considered to show a significant asymmetry in responding to movement in opposing directions.6. Directional selectivity was also tested for ninety-two cells following acute, unilateral, lesions of the visual cortex. For the eighty cells recorded, homolateral to the ablated cortex, 27.5% were judged as directionally selective using the statistical criterion, while 12.5% were selective with the ;null' criterion. Of the twelve cells isolated in the colliculus, contralateral to the lesions, seven were judged as directionally selective with the statistical, and three with the ;null' criterion.7. The effects of visual cortical lesions upon directional selectivity appeared to be confined to cells in the superficial layers of the colliculus. It was suggested that directional selectivity of many cells in the superficial layers of the tectum of the hamster is organized cortically.8. A clear spatial correspondence was observed for the receptive-fields of visual, somatosensory, and auditory neurones.9. As has been suggested for other species, the hamster's superior colliculus appears to play an important role in orienting the animal toward visual, somatosensory, and auditory stimuli.  相似文献   

12.
An important reaction in rodent models of persistent pain is for the animal to turn and bite/lick the source of discomfort (autotomy). Comparatively little is known about the supraspinal pathways which mediate this reaction. Since autotomy requires co-ordinated control of the head and mouth, it is possible that basal ganglia output via the superior colliculus may be involved; previously this projection has been implicated in the control of orienting and oral behaviour. The purpose of the present study was therefore, to test whether the striato-nigro-tectal projection plays a significant role in oral responses elicited by subcutaneous injections of formalin. Behavioural output from this system is normally associated with the release of collicular projection neurons from tonic inhibitory input from substantia nigra pars reticulata. Therefore, in the present study normal disinhibitory signals from the basal ganglia were blocked by injecting the GABA agonist muscimol into different regions of the rat superior colliculus. c-Fos immunohistochemistry was used routinely to provide regional estimates of the suppressive effects of muscimol on neuronal activity. Biting and licking directed to the site of a subcutaneous injection of formalin (50 microliters of 4%) into the hind-paw were suppressed in a dose-related manner by bilateral microinjections of muscimol into the lateral superior colliculus (10-50 ng; 0.5 microliter/side); injections into the medial superior colliculus had little effect. Bilateral injections of muscimol 20 ng into lateral colliculus caused formalin-treated animals to re-direct their attention and activity from lower to upper regions of space. Muscimol injected unilaterally into lateral superior colliculus elicited ipsilateral turning irrespective of which hind-paw was injected with formalin. Oral behaviour was blocked when the muscimol and formalin injections were contralaterally opposed; this was also true for formalin injections into the front foot. Interestingly, when formalin was injected into the perioral region, injections of muscimol into the lateral superior colliculus had no effect on the ability of animals to make appropriate contralaterally directed head and body movements to facilitate localization of the injected area with either front- or hind-paw. These findings suggest that basal ganglia output via the lateral superior colliculus is critical for responses to noxious stimuli which entail the mouth moving to and acting on the foot, but not when the foot is the active agent applied to the mouth. The data also suggest that pain produces a spatially non-specific facilitation of units throughout collicular maps, which can be converted into a spatially inappropriate signal by locally suppressing parts of the map with the muscimol.  相似文献   

13.
The activity of pineal N-acetyltransferase in the neonatal rat does not exhibit the large daily rhythm seen in the adult and is intermediate between the low day and high night adult values. These intermediate values appear to result from adrenergic stimulation. Blockade of adrenergic receptors or of catecholamine synthesis results in a decrease in enzyme activity in vivo. In vitro studies provide additional evidence of a completely developed postsynaptic adrenergic control system for pineal N-acetyltransferase activity at birth. Our observations indicate that the appearance of a circadian rhythm in pineal N-acetyltransferase at the end of the first week of life reflects the development of presynaptic mechanisms and structures necessary for the control of catecholamine release and uptake. These events follow the developmental appearance of the postsynaptic mechanisms required to mediate the adrenergic-cycle AMP regulation of pineal N-acetyltransferase activity, which can be detected prior to birth.  相似文献   

14.
The ability of adult rat retinal ganglion cell (RGC) axons to reinnervate normal target regions was examined in vitro. In co-culture experiments, adult rat retinal explants were placed adjacent to fetal rat midbrain sections that contained the superior colliculus (SC) which is the main target for RGC axons. Adult rat RGCs regrew axons over more than 500 microns on a polylysine-laminin substrate to reach the co-cultured explants. By using neurofilament immunohistochemistry and the fluorescent dye DiI for anterograde and retrograde tracing, it was shown that (1) adult rat RGCs with a stereotyped morphology survived in explant cultures for more than 4 weeks in the presence of fetal midbrain explants, (2) regenerating RGC axons preferentially terminated within midbrain target regions, and (3) RGCs formed functional synapses. In addition, the maturation of the SC region in midbrain explants was examined histologically and ultrastructurally to demonstrate appropriate target development.  相似文献   

15.
Reactions of the spinal motor center to tetanic stimulation of afferent nerve fibers in the peripheral nerve or dorsal roots L4--L6, have been investigated in rat pups ageing from 1 to 30 days. EMG was recorded in m. gastrocnemius. Within the first 12 days, in response to a constant stimulation periodic motor activity was observed which in its pattern was similar to the spontaneous cycles in newborn animals. On further development of rats, periodic form of the reaction is abolished, although it may be elicited after decerebration or during fatigue caused by a prolondged tetanization. Within the first week, tetanization of the afferents by the increasing stimuli either does not affect the periodic pattern of the activity, or results in a stepwise increase of the amplitude and duration of separate periods. On further development, gradual dependence of the intensity of the response from the stimulus strength is established, which is associated with functional differentiation of various motor units. The data obtained are discussed in relation to the role of afferent systems in evolution of functions of the central nervous system.  相似文献   

16.
An in vitro model was established to investigate factors underlying the sensory hyperinnervation of neonatal rat skin wounds that has been observed in vivo (Reynolds and Fitzgerald, J. Comp. Neurol. 358 (1995) 487-489). Explants of normal and wounded rat dorsal foot skin were co-cultured with explants of embryonic chick or newborn rat dorsal root ganglia for 24 h and the number of sensory neurites counted. Explants of skin surrounding a wound made at birth were taken 3 (P3) or 10 (P10) days later and compared with normal skin of the same age. In addition, explants were taken from adult skin wounded 3 and 10 days earlier. At P3, normal skin induced weak neurite outgrowth (mean 13.1 +/- 2.1 neurites per ganglion explant) but skin that had been wounded 3 days earlier, at birth, induced three times more neurite outgrowth (37.8 +/- 3.3). Ten days after wounding at birth, neurite outgrowth was still substantial (40.9 +/- 3.3) although at that age (P10), even normal skin stimulates substantial growth (37.4 +/- 2.9). Normal adult skin also stimulated neurite outgrowth (28.7 +/- 0.45) but this was not increased by wounding 3 or 10 days earlier, and this was enhanced 3 days but not 10 days after wounding. Anti-NGF (nerve growth factor) added to the culture medium blocked the constitutive neurite stimulating activity from normal P10 and adult skin but was ineffective in blocking the neurite stimulating activity produced by neonatal wounding. It is concluded that skin wounding at birth results in release of one or more sensory neurotrophic factors that stimulate rat and chick dorsal root ganglia neurite outgrowth for at least 10 days, but which do not include NGF.  相似文献   

17.
We have studied the development of the adrenal gland in the rat comprising the ages ranging from 0 to 90 days after birth. The weight of the animals and that of the adrenal glands demonstrated a linear growth with time until 75 days, both in males and females. The area of the zona glomerulosa (ZG) increased in size from birth until approximately 40 days of age. After that, growth had a much smaller slope (females, r=0.84, P < 0.001; males, r=0.81, P < 0.001). Aldosterone secretion had a marked increase until 20 days of age and thereafter demonstrated a tendency for a decrease (females, r=-0.19, P < 0.02: males r=-0.26, P < 0.001). Plasma renin activity followed a trend parallel to that of aldosterone. The steroid precursor 18-OH-deoxycorticosterone (18-OH-DOC) demonstrated a different course as it increased progressively with age especially in the females (females, r=0.57, P < 0.001; males, r=0.40, P <0.001). The expression of the enzyme 3-beta-hydroxysteroid dehydrogenase (3-beta-HSD) was also studied by immunohistochemistry and it was shown to be very low at birth and starting to increase by 10 days of age. After 30/40 days of age the amount of this enzyme existing in the ZG was comparable with that of the outer zona fasciculata (ZF). We conclude that the development of the ZG in the rat has particularities that make it different from that of the rest of the cortex.  相似文献   

18.
Clinically, neonatal hypoxic encephalopathy is commonly associated with seizure activity. Here we describe a rodent model of cerebral hypoxia in which there is are age dependent effects of hypoxia, with hypoxia inducing seizure activity in the immature rat, but not in the adult. Global hypoxia (3-4% O2) induced acute seizure activity during a window of development between postnatal day (P5-17), peaking at P10-12. Animals which had been rendered hypoxic between P10-12 had long term decreases in seizure threshold, while animals exposed at younger (P5) or older (P60) ages did not. Antagonists of excitatory amino acid (EAA) transmission appear to be superior to benzodiazepines in suppressing the acute and long term effects of perinatal hypoxia, suggesting involvement of the EAA system in these phenomena. No significant histologic damage occurs in this model, suggesting that functional alterations take place in neurons when exposed to an hypoxic insult at a critical developmental stage. Future work is directed at evaluating molecular and cellular events underlying the permanent increase in seizure susceptibility produced by this model.  相似文献   

19.
This study demonstrates that neurons in the supraoptic nucleus attain many of the prerequisites for functional activity prior to birth. Immunoassayable vasopressin (VP) was detected in the hypothalamo-neurohypophyseal system (HNS) of the rat as early as 17 days post-coitus (dpc). Vasopressin concentrations increased 3--6-fold daily from an average of 21 pg/animal on 17 dpc to 5984 pg/animal at 21 dpc. The daily increases were highly significant (P less than 0.001). Between 21 dpc and the morning of the day of birth on 22 dpc, a further significant increase (P less than 0.05) occurred to a mean level of 9672 pg VP/animal. Birth usually occurred on the afternoon of the 22nd day. Parturition did not seem to deplete VP stores in the HNS. Differentiation of the magnocellular neurons in the supraoptic nucleus closely paralleled the appearance and increases in VP. It was first possible to dintinguish a supraopic nucleus in the 17 dpc rat and to identify dense core granules in the developing neurons of the nucleus. Cytodifferentiation of the magnocellular neurons was essentially complete by 21 dpc. Synaptic contacts could not be found on the soma and dendrites of the supraoptic neurons until 21 dpc and were extremely rare throughout the period examined.  相似文献   

20.
We examined the effects of stimulation on either postnatal days 1-7 or 21-27 on passive avoidance reaction (PAR) of young rats. Animals received tactile or visual stimulation for 10 min each day, and were trained on postnatal day 28 in a step-through apparatus using a footshock of 0.75 mA for 2 s. Retention was tested on five consecutive days beginning on day 29. Memory retention was measured for each rat 24, 48, 72, 96 and 120 h after the acquisition trial. Step-through latencies to enter the dark compartment, time spent in the illuminated compartment and number of crossings of the light beam were recorded up to 200 s. Rats that received tactile or visual stimulation during the 4th postnatal week displayed significantly lower PAR latencies, a shorter stay in the illuminated compartment and a higher number of crossings of the light beam compared to rats treated during the 1st postnatal week. The untreated control group showed a rapid decline of PAR latencies. All experimental groups remained in the illuminated compartment longer and showed PAR latencies well above those of the control group. The differences became more pronounced when visual stimulation in the first postnatal week was used. The number of crossings of the light beam was significantly reduced by the treatment, with the exception of the experimental group stimulated visually in the 4th week. The behavioural changes induced by tactile or visual stimulation have a long-lasting effect in coping with a stressful task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号