首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一种基于差别矩阵属性约简的完备算法   总被引:1,自引:0,他引:1  
李小伟王娜  李永礼 《微机发展》2005,15(11):144-146,150
为获取一个较优的属性约简集,在对粗糙集中基于差别矩阵的属性约简算法研究的基础上,文中提出了一种新的属性约简算法.该算法对由差别矩阵得到的属性差别集进行运算,得到一种集合内元素之间没有包含关系的新集合,在分析该集合性质的基础上,给出针对该集合的一个较优属性约简集.最后对时间复杂度进行了分析,并给出了完备性证明.  相似文献   

2.
不相容决策表中一种新的属性约简算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对不相容决策表中一些属性约简算法的不足,结合粗糙集的代数观与信息观的优点,对差别矩阵加以改进,提出了一种新的属性约简算法,该算法在保证约简后决策表的正域和条件信息熵不变的情况下,降低了时间复杂度。通过实例说明了该算法的有效性和可行性。  相似文献   

3.
属性约简是粗糙集理论研究的核心内容之一,足知识获取的关键步骤.针对大规模数据集,基于决策表差别矩阵属性约简不具备可操作性缺点;以及基于差别矩阵属性频度的约简算法没有考虑到差别矩阵元素中属性个数多少的缺陷.基于差别矩阵元素的基数越小,其属性越重要的思想,按照基数由小到大的顺序,利用矩阵中具有相同基数的矩阵元素的簇集中属性出现的频度,确定属性的重要度,提出一种快速搜索属性约简算法,能快速搜索到属性的最优或次优约简.实验结果表明算法是可行、有效的.  相似文献   

4.
一种高效的增量式属性约简算法   总被引:2,自引:0,他引:2  
针对粗糙集中求属性核和属性约简存在的问题,首先给出了改进的差别矩阵定义,进而提出一种基于改进差别矩阵的核增量式更新算法,用于解决对象动态增加情况下核的更新问题;同时,为了降低现有增量式属性约简算法的时间、空间复杂度,提出一种不存储差别矩阵的高效属性约简算法,用于处理对象动态增加情况下属性约简的更新问题.理论分析及实验结果均表明了所提出算法的有效性和可行性.  相似文献   

5.
针对决策粗糙集模型,分析了它的正域随条件属性删除时的变化特点,即当条件属性集变小时,决策粗糙集的正域不但会变大,而且可能保持不变或变小。讨论了现有几种与正域相关的决策粗糙集属性约简定义的优缺点,在此基础上提出一种新的保正域不变的决策粗糙集属性约简。计算实例发现,现有基于差别矩阵的决策粗糙集属性约简方法不能求到它的所有保正域约简。上述研究结果说明,决策粗糙集模型与经典粗糙集模型的属性约简问题完全不同,因此不能简单地将经典粗糙集的方法平行推广到决策粗糙集模型上。该文的结论为将来系统研究决策粗糙集模型中的属性约简问题提供了很好的小结和理论基础。  相似文献   

6.
为了过滤掉不相关或相关程度较低的属性,就必须使用属性约简算法,从而使得属性约简成为粗糙集中一个核心的研究课题。基于差别矩阵的属性约简算法求解时总是先要求出差别矩阵,当问题规模增大时,将导致存放差别矩阵的空间过大和算法执行时间过长。针对这一问题,本文提出辨识集的定义,并利用辨识集设计一个新的属性约简算法。新算法在属性约简过程中不生成差别矩阵和大量的无用元素,大大减少存储量和计算量,从而提高算法的效率。实验验证了新算法的高效性。  相似文献   

7.
基于改进的差别矩阵的快速属性约简算法   总被引:1,自引:1,他引:1       下载免费PDF全文
为了解决基于差别矩阵属性约简的计算效率问题,首先以计数排序的思想设计了一个新的计算U/C的高效算法,其时间复杂度降为O(|C||U|)。其次分析了基于差别矩阵的属性约简算法的不足,提出了改进的差别矩阵的定义,利用快速计算核属性算法生成的核属性和出现频率最多的属性来降低差别矩阵的大小,并设计了基于改进的差别矩阵的快速属性约简算法,证明了该新算法的时间复杂度和空间复杂度分别被降为max(O|C|2Σ0≤i相似文献   

8.
一种基于差别矩阵的启发式属性约简算法   总被引:2,自引:0,他引:2       下载免费PDF全文
为了获得决策系统中更好的相对属性约简,本文提出了一种基于差别矩阵的启发式属性约简算法。该算法以求差别矩阵为基础,不仅考虑了所选择条件属性与决策属性的互信 息,还考虑了其取值的分布情况,从信息论角度定义了一种新的属性重要性度量方法,将其作为启发式信息,最终求得属性约简集。实例表明,算法能够有效地对决策系统进进行约简,获得比较理想的约简结果,同时约简后的决策规则数目较少。  相似文献   

9.
属性约简是粗糙集理论的重要研究内容之一。在Pawlak粗糙集模型中,正区域大小随着属性增多而变大,呈现单调性。然而,在决策粗糙集模型中,概率正区域与属性集之间不具有单调性,从而产生各种属性约简定义。为此,深入研究了决策粗糙集属性约简问题,阐述了几种约简定义之间的关系,证明了保持局部最大概率正区域的约简具有较大的代价,指出了保持所有对象的正决策不变的约简呈现稳定性和存在属性核。  相似文献   

10.
基于差别矩阵的属性约简算法及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
铝电解过程中存在着各种相互影响的工艺参数,如何从中选择一部分参数进行分析,对铝电解生产有着重要的意义。提出了一种改进的基于差别矩阵的属性约简算法,避免了普通差别矩阵中的重复元素。用真实的铝电解生产数据对提出的算法进行了验证,效果良好。  相似文献   

11.
分析HORAFA算法和HORAFA-A算法的不足,给出一种获得最优约简的启发式算法.算法以核属性为初始约简集,以属性频率为启发式信息,选择必要的属性加入约简集.该算法不仅适用于相容决策表系统,也适用于不相容决策表系统;同时,改进了反向消除方法,可以更快速地删除多余条件属性.实验表明,该算法是正确的,并且效率优于HORAFA-A算法.  相似文献   

12.
属性约简是粗糙集理论的重要研究内容之一,其中基于区分矩阵的约简算法是一种高效的约简算法,但算法具有很高的空间复杂度.为了减少区分矩阵的空间开销,利用浓缩树结构,结合区分矩阵单个属性一定为核属性的特征,提出改进的生成浓缩树算法,压缩存储区分矩阵中的非空数据项,且不丢失原区分矩阵的所有信息;利用生成的浓缩树结构结合启发式策略,给出属性约简算法.实验结果表明,算法正确有效并且空间复杂度有明显降低.  相似文献   

13.
基于遗传算法的粗糙集属性约简算法   总被引:1,自引:0,他引:1  
为了研究粗糙集理论中属性约简问题,给出了一种属性相对重要度定义,证明了其合理性,并将它应用到基于遗传算法的约简算法中,提出一种启发式遗传算法.算法采用修正策略保证群体进化收敛于最小约简,同时引入属性相对重要度作为启发信息,加快算法的收敛速度.对算法进行的时间复杂度和完备性分析以及数值实验表明,基于遗传算法的粗糙集属性约简算法具有完备、快速收敛等特点.  相似文献   

14.
属性约筒是粗糙集理论的重要研究内容之一,以浓缩树结构存储区分矩阵中的非空数据项,对IReductBtree算法进行了一些改进.它是根据树结构特点结合特殊的启发式策略,删除树中结点,直到树空最后得到信息系统的一个约简.最后,通过一个实例完整演示了该方法证实其有效性.  相似文献   

15.
基于属性重要性的属性约简算法   总被引:2,自引:0,他引:2  
粗糙集理论是一个新的处理不确定性问题的数学工具,属性约简是粗糙集理论的核心问题之一。为了获得决策系统中更好的相对属性约简,提出一种基于属性重要性的属性约简算法。将可辨识矩阵中出现次数多少作为属性重要性的判断依据。算法还考虑了当出现次数相同的情况下属性选择问题,由此定义新的属性重要性,以新的属性重要性为启发信息,分析表明,提出的算法是有效可行的。  相似文献   

16.
当信息系统的对象和决策属性不变而不断增加条件属性时,为了获得该系统的最小约简属性,一般方法是对决策表的所有数据进行重新计算,很显然这种方法不可取。在粗糙集理论的基础上,给出了过渡相对差异比较表的定义,提出一种新的增加条件属性的最小约简算法。实例说明:该算法节省了大量的时间和空间的资源,并且结论与传统的算法得到的属性最小约简的结论是一致的,所以该算法具有一定的适用价值。  相似文献   

17.
增量式属性约简是一种针对动态数据集的新型属性约简方法.然而目前的增量式属性约简很少有对不完备混合型的信息系统进行研究.针对这类问题提出一种属性增加时的增量式属性约简算法.在不完备混合型信息系统下引入邻域容差关系.基于邻域容差关系的粒化单调性,提出信息系统属性增加时邻域容差条件熵的增量式更新方法,并提出了不完备混合型信息...  相似文献   

18.
在粗糙集理论研究的诸多方面中,属性约简是其核心问题之一.为寻求高效、快捷的属性约简算法,从粗糙集理论出发,在可分辨关系和对象差异矩阵概念的基础上,构造出"基于分辨能力指数的启发式约简算法".算法采用自底向上的方法,以属性集的核作为求解约简的基础,利用分辨能力指数信息作为属性选取的依据.算法简化了计算,无需生成中间结果,没有增加系统的时空开销.最后,UCI数据集的测试结果表明,启发式约简算法有效、可行.  相似文献   

19.
一种基于粗集理论的增量式属性约简算法   总被引:3,自引:1,他引:2  
增量式学习中,当信息系统的对象和决策属性不变而不断增加条件属性时,为了获得该系统的约简属性,一般方法是对决策表中的所有数据重新计算,但这种方法显然效率很低且不必要.在粗集理论的基础上,给出相对区分矩阵和绝对区分矩阵的定义,提出一种新的增量式属性约简算法.通过实例得知:由该算法得到的属性约简与传统算法得到的属性约简结果相同,但该算法不仅降低了时间复杂度而且其分类质量一般要优于原来的分类质量,所以该属性约简具有一定的实用价值.  相似文献   

20.
对基于二进制分辨矩阵的属性约简算法进行深入研究,分析对比几种典型的属性约简算法的性能。在此基础上提出一种基于二进制分辨矩阵的启发式算法。该算法以矩阵的行与列两个方向的特征作为度量属性重要性的依据,更有可能获得决策表的一个最优约简。实验结果表明,该算法有效地提高了约简性能和识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号