首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cooling curves and the change of contraction/expansion during solidification and cooling were tested by using a selfmade device which could achieve the one-dimensional contraction instead of three-dimensional contraction of the casting.Then, the effects of Al content(0, 1.1, 3, 5, 10, 12.9, 15, 17, 19, 22, 24 and 30 wt%) on the thermal contraction/expansion of the binary Mg-Al as-cast alloys during solidification were obtained. The results showed that expanding instead of contraction was present in Mg-Al alloys with the addition of 0-30 wt% Al during solidification. The values of expansion significantly increased at first and then decreased with the increase in Al content. And the maximum expansion ratio of 0.44%(maximum expansion value: 0.841 mm) was present in the Mg-15 wt% Al alloy. Contraction instead of expansion occurred once the temperature drops to the temperature corresponding to the expansion value in total, indicating the occurrence of a continuous expansion during the solidification process in mushy zone for the Mg alloys with Al addition of 5-30 wt%. The expansion value in total consisted of two parts: the expansions occurring in the liquid-phase zone and mushy zone. The expansion in liquid zone was present in every Mg-Al alloy, and it contributed to the most proportion of the total expansion value when the Al content in Mg-Al alloy was lower than 10 wt% or higher than 22 wt%. However, the total expansion value was mainly determined by the solidification behavior in mushy zone when the Al content was among 10-22 wt% in Mg-Al alloys.  相似文献   

2.
The morphological evolution of the precipitates in Al–7.4Zn–1.7Mg–2.0Cu(wt%) alloy was studied by highresolution transmission electron microscopy(HRTEM). Statistics reveal that the hardness of the alloy changes accordingly with the change of the average thickness–diameter ratio of precipitates. The GPII zones are mainly responsible for the first and also the highest hardness peak. They grow in diameter and keep 7-atomic-layer in thickness. Once the thickness changes, the phase transformation from GPII zone to g0 or g-precursor would occur. The resultant metastable g0 and g-precursor precipitates grow in both diameter and thickness, but much faster in the former. After the first hardness peak,the metastable g0 precipitates and g-precursor, coexisting with part of GPII zones, are counted as the main hardening precipitates.  相似文献   

3.
《Acta Materialia》2001,49(14):2827-2841
The thickening kinetics of Ω plates in an Al–4Cu–0.3Mg–0.2Ag (wt. %) alloy have been measured at 200, 250 and 300°C using conventional transmission electron microscopy techniques. At all temperatures examined the thickening showed a linear dependence on time. At 200°C the plates remained less than 6 nm in thickness after 1000 h exposure. At temperatures above 200°C the thickening kinetics are greatly increased. Atomic resolution Z-contrast microscopy has been used to examine the structure and chemistry of the (001)Ω6(111)α interphase boundary in samples treated at each temperature. In all cases, two atomic layers of Ag and Mg segregation were found at the broad face of the plate. The risers of the thickening ledges and the ends of the plates were free of Ag segregation. The necessary redistribution of Ag and Mg accompanying a migrating thickening ledge occurs at all temperatures and is not considered to play a decisive role in the excellent coarsening resistance exhibited by the Ω plates at temperatures up to 200°C. Plates transformed at 200°C rarely contained ledges and usually exhibited a strong vacancy misfit normal to the plate. A large increase in ledge density was observed on plates transformed at 300°C, concomitant with accelerated plate thickening kinetics. The high resistance to plate coarsening exhibited by Ω plates at temperatures up to 200°C, is due to a prohibitively high barrier to ledge nucleation in the strong vacancy field normal to the broad face of the plate. Results also suggest that accommodation of the large misfit that exists normal to the broad face of the plate is unlikely to provide the driving force for Ag and Mg segregation.  相似文献   

4.
Generally, the good combination of pre-deformation and aging can improve the mechanical strength of the Al–Cu–Li–Mg alloys. However, the effects of pre-deformation on competitive precipitation relationship and precipitation strengthening have not been clarified in detail in Al–Cu–Li–Mg alloys with high Mg. In the present study, the effects of pre-deformation level on the microstructure and mechanical properties of an Al–2.95 Cu–1.55 Li–0.57 Mg–0.18 Zr alloy have been investigated. It is found that the introduction of dislocation by 5% pre-deformation can facilitate the precipitation of new successive composite precipitates and T _1 precipitates along the sub-grain boundaries or dislocations and inhibit the precipitation of dispersive GPB zones which is the main precipitates of the alloys without pre-deformation. The introduction of 5% pre-deformation can enhance the mechanical properties considerably. When the pre-deformation level increases from 5 to 15%, the number density of the successive composite precipitates and T _1 precipitates increases, and the aspect ratio of T _1 precipitates decreases. The decrease in T _1 precipitate aspect ratio and the increment of the successive composite precipitates result in the reduction in precipitation strengthening. Therefore, the increase in pre-deformation level from 5 to 15% does not further improve the mechanical properties of the alloys, although the dislocation strengthening increases continuously.  相似文献   

5.
In this study, fatigue properties and fracture mechanism of dissimilar Al–Mg–Si/Al–Zn–Mg aluminum alloys friction stir welding(FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al–Zn–Mg aluminum alloy was placed at the advancing side(AS). At 10~7 cycles, the fatigue strengths of Al–Zn–Mg–AS and Al–Mg–Si–AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al–Mg–Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al–Zn–Mg–AS joint was associated with the bridging effect of the bigger secondary phase particles.  相似文献   

6.
7.
Continuous solidification experiments are carried out with Pb–Al alloys under the influence of the electric current pulses(ECPs). The results demonstrate that the ECPs mainly affect the microstructure formation through changing the energy barrier for the nucleation of the minority phase droplets(MPDs) and minority phase particles(MPPs) during cooling Pb–Al alloys in the liquid–liquid and liquid–solid phase transformation temperature ranges in advance of the solidification of the matrix liquid. For Pb–Al alloys with Al-rich droplets/particles as the minority phase, the ECPs lower the energy barriers for the nucleation of the MPDs/MPPs and cause a significant increase in the nucleation rate of the MPDs/MPPs and, thus,promote the formation of Pb–Al alloys with a well-dispersed or even nanoparticles dispersed microstructure. The ECPs parameters show an important influence on the microstructure formation of Pb–Al alloys. The refinement extent of the MPDs/MPPs increases with the increase in the peak current density. For a given peak current density, the refinement extent of the MPDs/MPPs increases with the increases in the pulse frequency and pulse width first, and then level off and become asymptotic.  相似文献   

8.
9.
The microstructure evolution and the corrosion feature of Al–x Cu– y Li–Mg alloys( x : y = 0.44, 1.65 and 4.2) were systematically investigated under the same artificial aging conditions. The relationships between types of precipitates and mechanical performance, as well as electrochemical behaviors, were discussed. Our results show that different types of precipitates can be obtained in alloys with different Cu/Li mass ratios, which significantly influences the mechanical performance of the alloys and substantial corrosion behaviors. Specifically, the analogous corrosion evolution in the aging Al– x Cu– y Li–Mg alloys was first ascertained to be derived from the growth mechanism of the precipitates at the grain boundary(GB). Moreover, a small number of GB precipitates can be obtained in the aged alloy with the lowest Cu/Li mass ratio, thereby resulting in the largest intergranular corrosion resistance. A higher proportion of the GB T_1 phase in the continuous precipitates induces higher corrosion sensitivity in alloy with a high Cu/Li mass ratio.  相似文献   

10.
《Acta Materialia》1999,47(2):489-500
Microstructure and microsegregation in two directionally solidified Al alloys, Al–3.9Cu–0.9Mg and Al–15Cu–1Mg (in wt%), were investigated for cooling rates between 0.78 and 0.039 K/s. Transverse and longitudinal sections were examined to exhibit dendritic microstructures. Fractions of solids formed were determined using quantitative image analysis and solute redistribution in the primary phase was determined using area scans. The model employed to calculate microsegregation is based on the Scheil model but including solid-state diffusion, dendrite arm coarsening and undercooling of the dendrite tip and the formation of eutectic. The model-calculated results were found to be in good agreement with the experimentally determined concentration distributions in the primary α phase and the amounts of phases formed. It was found that the dendrite morphology was best described by a cylindrical arm geometry and that the accuracy of the phase diagram could have a significant influence on the microsegregation predictions. For the alloy with low copper content, two types of embedded droplets were observed.  相似文献   

11.
简介了相场方法,利用相场法对纯铝进行了数值模拟。研究了噪声和各向异性等参数对晶粒形貌的影响。计算结果表明:噪声的加入会促进二次枝晶的生长;各向异性系数对枝晶的生长有重要作用。模拟结果与实验结果基本吻合。  相似文献   

12.
采用元胞自动机方法,结合合金凝固过程中的动量、能量和质量传输,建立了计算枝晶形貌与偏析发展的数学模型。把该数学模型应用到Fe-0.6%C合金凝固过程,枝晶臂的生长、粗化和柱状晶向等轴晶转变过程得到了再现。同时该数学模型也描述了凝固过程熔体流动对Fe-0.6%C枝晶形貌发展的影响。  相似文献   

13.
Microstructural evolution in nonequihbrium solidification of Ti-48Al-xNb alloys with Nb contents ranging from2 to 8 at%has been studied by containerless electromagnetic levitation.Levitated drops of controlled undercooling were quenched onto chill copper substrates and subjected to phase and microstructure analysis.With increasing Nb content,the solidification path changes gradually from hyperperitectic solidification to hypoperitectic solidification and both solidification segregation(S-segregation) and β-solidification gradually increase.A transition from typical hypoperitectic solidification to a sole solidification of the β phase beyond a critical undercooling is revealed for the Ti-48Al-8Nb hypoperitectic alloy.For the Ti-48Al-2Nb alloy,the morphologies of the primary β dendrites are not observed.With increasing undercooling,the coarsening of the lamellar colonies occurs,which can be attributed to the transition of the primary β dendritic morphology.Furthermore,the solute concentration profiles for the final solidification microstructure are obtained to examine the segregation behaviors of alloying elements.With increasing Nb content,the undercooling eliminating S-segregation gradually increases.  相似文献   

14.
研究了含铁20%、30%和40%的Cu-Fe包晶合金微观组织中的富Fe枝晶生长行为.结果表明,过冷液相的传热能力影响微观组织中枝晶的分布.当传热能力较强时,枝晶的分布较为均匀,枝晶的大小差别较小;反之,则枝晶分布不匀,且尺寸差别较大.对于溶质含量较低的合金,微观组织中枝晶分布的随机性与浓度起伏的不确定性有关.在溶质富集微区的过冷液相中容易产生枝晶晶核.随着溶质Fe含量的增加,单位面积上富Fe枝晶所占的比例、枝晶分枝的层次、枝晶分枝长度和密度都明显增加,而分枝的直径增加较少.溶质富集主要影响枝晶的侧向生长,而枝晶尖端的生长受溶质富集的影响较小.  相似文献   

15.
Driven by industrial demand, extensive efforts have been made to investigate microstructure evolution and microsegregation development during solidification of multicomponent alloys. This paper briefly reviews the recent progress in modeling of microstructures and microsegregation in solidification of multicomponent alloys using various models including micromodel, phase field, front tracking, and cellular automaton approaches. A two-dimensional modified cellular automaton (MCA) model coupled with phase diagram software PanEngine is presented for the prediction of microstructures and microsegregation in the solidification of ternary alloys. The model adopts MCA technique to simulate dendritic growth. The thermodynamic data needed for determining the dynamics of dendritic growth are calculated with PanEngine. After validating the model by comparing the simulated values with the prediction of the Scheil model for solute profiles in the primary dendrites as a function of solid fraction, the model was applied to simulate the microstructure and microsegregation in the solidification of Al-rich ternary alloys. The simulation results demonstrate the capabilities of the present model not only to simulate realistic dendrite morphologies, but also to predict quantitatively the microsegregation profiles in the solidification of multi-component alloys. This article was presented at the Multi-Component Alloy Thermodynamics Symposium sponsored by the Alloy Phase Committee of the joint EMPMD/SMD of The Minerals, Metals, and Materials Society (TMS), held in San Antonio, Texas, March 12-16, 2006, to honor the 2006 William Hume-Rothery Award recipient, Professor W. Alan Oates of the University of Salford, UK. The symposium was organized by Y. Austin Chang of the University of Wisconsin, Madison, WI, Patrice Turchi of the Lawrence Livermore National Laboratory, Livermore, CA, and Rainer Schmid-Fetzer of the Technische Universitat Clausthal, Clauthal-Zellerfeld, Germany.  相似文献   

16.
赵宇辉  张国伟  侯华  程军 《铸造技术》2006,27(5):511-513
简介了相场方法,利用相场法对纯铝进行了数值模拟,研究了晶核半径、界面厚度等参数对晶粒形貌的影响。模拟结果与实验结果基本吻合。表明相场方法符合枝晶生长的物理机制。  相似文献   

17.
利用传统的元胞自动机方法摸拟了基于溶质扩散控制界面生长机制的枝晶演变和显微偏析。模拟结果显示这种方法可以显示出枝晶形貌和显微偏析,同时可以再现凝固过程中的再辉现象。在模拟的过程中发现模拟的枝晶尖端半径与理论计算的枝晶尖端半径符合较好,但模拟结果也显示出一些波动,通过分析发现导致波动的原因是元胞自动机方法的规则将连续的枝晶生长模型割裂成离散跳跃的生长方式,因此不可避免地产生模拟结果波动。  相似文献   

18.
The microstructure, microsegregation, and mechanical properties of directional solidified Mg–3.0Nd–1.5Gd ternary alloys were experimentally studied. Experimental results showed that the solidification microstructure was composed of dendrite primary a(Mg) phase and interdendritic a(Mg) ? Mg12(Nd, Gd) eutectic and Mg5 Gd phase. The primary dendrite arm spacing k1 and secondary dendrite arm spacing k2 were found to be depended on the cooling rate R in the form k1= 8.0415 9 10-6R-0.279 and k2= 6.8883 9 10-6R-0.205, respectively, under the constant temperature gradient of40 K/mm and in the region of cooling rates from 0.4 to 4 K/s. The concentration profiles of Nd and Gd elements calculated by Scheil model were found to be deviated from the ones measured by EPMA to varying degrees, due to ignorance of the back diffusion of the solutes Nd and Gd within a(Mg) matrix. And microsegregation of Gd depended more on the growth rate, compared with Nd microsegregation. The directionally solidified experimental alloy exhibited higher strength than the non-directionally solidified alloy, and the tensile strength of the directionally solidified experimental alloy was improved,while the corresponding elongation decreased with the increase of growth rate.  相似文献   

19.
The solidification characterization of Mg-xZn-0.5Zr (x = 0, 1, 3, 4, 5 wt%) alloys has been extensively investigated through thermal analysis, microstructure characterization and thermodynamic calculations. The impact of Zn content on the grain growth restriction, dendrite coherency and thus the final grain size has been investigated and discussed. Increasing Zn content, the grain size of Mg-xZn-0.5Zr alloy was firstly refined and then coarsened with the finest grain size of ~ 50 μm for the Mg-3Zn-0.5Zr (ZK31) alloy. Significant effects of the grain size on the mechanical properties were observed in the investigated alloys. The combination of growth restriction factor theory and dendrite coherency point provides a reasonable explanation of the grain size results. It helps to further understand the mechanisms of grain refinement and grain coarsening related to solute content, providing reference for alloy design and grain size prediction.  相似文献   

20.
由凝固过程中的三大守恒定律,建立了金属基复合材料凝固数学模型。根据所建立的模型对Al2O3/Al-4.5Cu复合材料进行数值模拟,并在与模拟计算相同条件下进行了实验验证。模拟结果表明:Al2O3短纤维周围存在第二相偏析;随凝固冷却速度增大,复合材料基体偏析加剧;随复合材料中纤维体积分数增大,基体中偏析减小;模拟结果与实验结果十分吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号