首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chromium (VI) adsorption on boehmite   总被引:1,自引:0,他引:1  
Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.  相似文献   

2.
Adsorption capacity of Cr(VI) onto Hevea Brasilinesis (Rubber wood) sawdust activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ) and standard entropy (DeltaS degrees ) were evaluated. Adsorption kinetics of Cr(VI) ions onto rubber wood sawdust activated carbon were analyzed by pseudo first-order and pseudo second-order models. Pseudo second-order model was found to explain the kinetics of Cr(VI) adsorption most effectively. Intraparticle diffusion studies at different temperatures show that the mechanism of adsorption is mainly dependent on diffusion. The rate of intraparticle diffusion, film diffusion coefficient and pore diffusion coefficient at various temperatures were evaluated. The Langmuir, Freundlich and Temkin isotherm were used to describe the adsorption equilibrium studies of rubber wood sawdust activated carbon at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherm in the temperature range studied. The result shows that the rubber wood sawdust activated carbon can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported.  相似文献   

3.
Removal of Cr(VI) from aqueous solutions using modified red pine sawdust   总被引:3,自引:0,他引:3  
The adsorption of Cr(VI) from aqueous solutions on sawdust (SD), base extracted sawdust (BESD) and tartaric acid modified sawdust (TASD) of Turkish red pine tree (Pinus nigra), a timber industry waste, was studied at varying Cr(VI) concentrations, adsorbent dose, modifier concentration and pH. Batch adsorption studies have been carried out. Sawdust was collected from waste timber industry and modified with various amount of tartaric acid (TA) (0.1-1.5M). The batch sorption kinetics has been tested and the applicability of the Langmuir and Freundlich adsorption isotherms for the present system has been tested at 25+/-2 degrees C. Under observed test conditions, the equilibrium adsorption data fits the linear Freundlich isotherms. An initial pH of 3.0 was most favorable for Cr(VI) removal by all adsorbents. Maximum Cr(VI) was sequestered from the solution within 120 min after the beginning for every experiment. The experimental result inferred that chelation and ion exchange is one of the major adsorption mechanisms for binding metal ions to the SD. Percentage removal of Cr(VI) was maximum at the initial pH of 3.0 (87.7, 70.6 and 55.2% by TASD, BESD, and SD, respectively). Adsorption capacities range from 8.3 to 22.6 mg/g for SD samples.  相似文献   

4.
To improve the removal efficiency of heavy metals from wastewater, the surface of a fungal biomass was modified to obtain a high-capacity biosorbent for Cr(VI) in wastewater. The effects of pH, initial concentration, and sorption time on Cr(VI) removal by polyethylenimine (PEI)-modified Phanerochaete chrysosporium were investigated. The biomass adsorption capacity was significantly dependent on the pH of the solution, and the optimum pH was approximately 3.0. The maximum removal for Cr(VI) was 344.8 mg/g as determined with the Langmuir adsorption isotherm. Pseudo-first-order Lagergren model is better than pseudo-second-order Lagergren model when simulating the kinetic experiment results. Furthermore, an amount of Cr(VI) was reduced to Cr(III), indicating that some reactions occurred on the surface of the biomass leading to the reduction of Cr(VI). The point of zero potential for the modified biomass increased from an initial pH of 3.0 to a much higher value of 10.8, indicating that the PEI-modified biomass is better than the pristine biomass for adsorption of anionic adsorbates. Results showed that the PEI-modified biosorbent presented high efficiency in treating Cr(VI)-contaminated wastewater.  相似文献   

5.
The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (kad), standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   

6.
Industrial wastewaters containing heavy metals along with high concentration of soluble salts pose a major environmental problem that needs to be remedied. The present study reports on biosorption of Cr(VI) by native isolate of Lyngbya putealis HH-15 in batch system under varying range of pH (2.0-10.0), initial metal ion concentration (10-100mg/l) and salt concentration (0-0.2%). Maximum metal removal (94.8%) took place at pH 3.0 with initial Cr concentration of 50mg/l, which got reduced (90.1%) in the presence of 0.2% salts. Adsorption equilibrium and kinetic behavior of Cr(VI) in solution was also examined. Both Langmuir and Freundlich models fitted well to explain the adsorption data (R(2)=0.90 and 0.87, respectively) at 0.2% salt concentration. Pseudo-second order kinetic model also fitted well to both the systems, viz. Cr(VI) and Cr(VI)+salt.  相似文献   

7.
In this study, biosorption of Cr (VI) ion was investigated by using biomass of Agaricus bisporus (a species of mushroom) in a temperature and shaking speed controlled shaker. The effect of shaking speed, biomass concentration, initial metal ion concentration and initial pH on biosorption yield was determined and the fitness of biosorption data for Freundlich and Langmuir adsorption models was investigated. Optimum biosorption conditions were found to be pH 1, C0=50 mg/l, m=10 g/l, shaking speed=150 rpm, T=20 degrees C Cr (VI), respectively. It was found that biosorption of Cr (VI) ions onto biomass of A. bisporus was better suitable to Freundlich adsorption model than Langmuir adsorption model. The correlation coefficients for the second-order kinetic model obtained were found to be 0.999 for all concentrations. These indicate that the biosorption system studied belongs to the second-order kinetic model.  相似文献   

8.
Hu J  Chen C  Zhu X  Wang X 《Journal of hazardous materials》2009,162(2-3):1542-1550
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH <2. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism for chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release.  相似文献   

9.
Highly ordered mesoporous carbon with large accessible pores (OMC-P) was prepared by using laboratory-made poly(ethylene oxide)-b-polystyrene diblock copolymer as template via the evaporation-induced self-assembly method. The OMC-P was first used as adsorbent for removal of Cr(VI) ion from aqueous solution. Adsorption behavior was studied as a function of time, concentration of adsorbate, temperature, and pH. The kinetics of adsorption of Cr(VI) ion onto OMC-P is well fit to the pseudo-second order model. The Cr(VI) ion adsorption is favored at lower temperatures and at initial acid pH values in the equilibrium. The Freundlich and the Langmuir isotherm fit the equilibrium data satisfactorily. The influence of porosity on equilibrium adsorption capacity was investigated on three types of carbon materials, namely, OMC-P, ordered mesoporous carbon templated from amphiphilic triblock copolymer F127 (OMC-F) and commercial activated carbon (AC). The prepared OMC-P exhibits much higher adsorption performance than the other two carbons.  相似文献   

10.
Adsorption of chromium from aqueous solutions by maple sawdust   总被引:26,自引:0,他引:26  
This paper presents the data for the effect of adsorbent dose, initial sorbate concentration, contact time, and pH on the adsorption of chromium(VI) on maple sawdust. Batch adsorption studies have been carried out. An empirical relationship has been obtained to predict the percentage chromium(VI) removal at any time for known values of sorbent and initial sorbate concentration. Under observed test conditions, the equilibrium adsorption data fits the linear Langmuir and Freundlich isotherms. The experimental result inferred that chelation ion exchange is one of the major adsorption mechanisms for binding metal ions to the maple sawdust.  相似文献   

11.
The sorption of Cr(VI) from aqueous solutions with macroporous resins which contain quarternary amine groups (Lewatit MP 64 and Lewatit MP 500) was studied at varying Cr(VI) concentration, adsorbent dose, pH, contact time and temperature. Batch shaking sorption experiments were carried out to evaluate the performance of Lewatit MP 64 and Lewatit MP 500 anion exchange resins in the removal of Cr(VI) from aqueous solutions. The concentration of Cr(VI) in aqueous solution was determined by UV-visible spectrophotometer. The ion exchange process, which is dependent on pH, showed maximum removal of Cr(VI) in the pH range 3-7 for an initial Cr(VI) concentration of 1x10(-3) M. The optimum pH for Cr(VI) adsorption was found as 5.0 for Lewatit MP 64 and 6.0 for Lewatit MP 500. The maximum Cr(VI) adsorption at pH 5.0 is 0.40 and 0.41 mmol/g resin for Lewatit MP 64 and Lewatit MP 500 anion exchangers, respectively. The maximum chromium sorption occurred at approximately 60 min for Lewatit MP 64 and 75 min for Lewatit MP 500. The suitability of the Freundlich and Langmuir adsorption models was also investigated for each chromium-sorbent system. The uptake of Cr(VI) by the anion exchange resins was reversible and so it has good potential for the removal of Cr(VI) from aqueous solutions. Both ion exchangers had high bonding constants but Lewatit MP 500 showed stronger binding. The rise in the temperature caused a slight decrease in the value of the equilibrium constant (K(c)) for the sorption of Cr(VI) ion.  相似文献   

12.
Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics   总被引:5,自引:0,他引:5  
This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100mgL(-1). The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3.  相似文献   

13.
Biosorption equilibrium, kinetics and thermodynamics of chromium(VI) ions onto cone biomass were studied in a batch system with respect to temperature and initial metal ion concentration. The biosorption efficiency of chromium ions to the cone biomass decreased as the initial concentration of metal ions was increased. But cone biomass of Pinus sylvestris Linn. exhibited the highest Cr(VI) uptake capacity at 45 degrees C. The biosorption efficiency increased from 67% to 84% with an increase in temperature from 25 to 45 degrees C at an initial Cr(VI) concentration of 300 mg/L. The Langmuir isotherm model was applied to experimental equilibrium data of Cr(VI) biosorption depending on temperature. According to Langmuir isotherm, the monolayer saturation capacity (Q(max)) is 238.10 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data for initial Cr(VI). The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order kinetic model. The activation energy of biosorption (E(a)) was determined as 41.74 kJ/mol using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (DeltaG(0), DeltaH(0) and DeltaS(0)) were also evaluated.  相似文献   

14.
In this study, adsorption of Cr(VI) onto the four low-cost biosorbents (Laminaria japonica, P. yezoensis Ueda, rice bran and wheat bran) was investigated depending on solution pH, contact time, adsorbent concentration and adsorption isotherms by employing batch adsorption technique. The adsorption capacities were significantly influenced by solution pH, with lower pH favoring higher Cr(VI) removal for various biosorbents. The ionic strength of NaCl was also observed to have a significant impact on the Cr(VI) adsorption due to the competition of Cl(-) in the aqueous solutions. The batch equilibrium data were correlated to Langmuir and Freundlich isotherms and the data fitted better to the Freundlich isotherm equation. The apparent thermodynamic parameters were calculated for each of the four biosorbents and the obtained numerical values showed that the Cr(VI) adsorption onto the various low-cost biosorbents is spontaneous, entropy-driven and endothermic processes. The batch kinetic data were correlated to the pseudo-first order and pseudo-second order models and the data fitted better to the pseudo-second order equation. An intraparticle diffusion model was applied to investigate the adsorption mechanisms. The adsorption capacities for various biosorbents studied in this work were inversely proportional to the adsorbent concentrations.  相似文献   

15.
The potential to remove Cr(VI) ion from aqueous solutions through biosorption using, the shells of Walnut (WNS) (Juglans regia), Hazelnut (HNS) (Corylus avellana) and Almond (AS) (Prunus dulcis) was investigated in batch experiments. The equilibrium adsorption level was determined to be a function of the solution contact time and concentration. Kinetic experiments revealed that the dilute chromium solutions reached equilibrium within 100 min. The biosorptive capacity of the shells was dependent on the pH of the chromium solution, with pH 3.5 being optimal. Adsorption of Cr(VI) ion uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.0 and 3.5, depending on the biomaterial, that correspond to equilibrium pH values of 3.5 for (WNS), 3.5 for (HNS) and 3.2 for (AS). The adsorption data fit well with the Langmuir isotherm model. The sorption process conformed to the Langmuir isotherm with maximum Cr(VI) ion sorption capacities of 8.01, 8.28, and 3.40 mg/g for WNS, HNS and AS, respectively. Percentage removal by WNS, HNS and AS was 85.32, 88.46 and 55.00%, respectively at a concentration of 0.5 mM. HNS presented the highest adsorption capacities for the Cr(VI) ion.  相似文献   

16.
The objective of this work was to propose an alternative use for coffee husks (CH), a coffee processing residue, as untreated sorbents for the removal of heavy metal ions from aqueous solutions. Biosorption studies were conducted in a batch system as a function of contact time, initial metal ion concentration, biosorbent concentration and pH of the solution. A contact time of 72 h assured attainment of equilibrium for Cu(II), Cd(II) and Zn(II). The sorption efficiency after equilibrium was higher for Cu(II) (89-98% adsorption), followed by Cd(II) (65-85%) and Zn(II) (48-79%). Even though equilibrium was not attained in the case of Cr(VI) ions, sorption efficiency ranged from 79 to 86%. Sorption performance improved as metal ions concentrations were lowered. The experimental sorption equilibrium data were fitted by both Langmuir and Freundlich sorption models, with Langmuir providing the best fit (R2>0.95). The biosorption kinetics was determined by fitting first and second-order kinetic models to the experimental data, being better described by the pseudo-second-order model (R2>0.99). The amount of metal ions sorbed increased with the biosorbent concentration in the case of Cu(II) and Cr(VI) and did not present significant variations for the other metal ions. The effect of the initial pH in the biosorption efficiency was verified in the pH range of 4-7, and the results showed that the highest adsorption capacity occurred at distinct pH values for each metal ion. A comparison of the maximum sorption capacity of several untreated biomaterial-based residues showed that coffee husks are suitable candidates for use as biosorbents in the removal of heavy metals from aqueous solutions.  相似文献   

17.
Alternanthera philoxeroides biomass, a type of freshwater macrophyte, was used for the sorptive removal of Ni(II), Zn(II) and Cr(VI) from aqueous solutions. Variables of the batch experiments include solution pH, contact time, particle size and temperature. The biosorption capacities are significantly affected by solution pH. Higher pH favors higher Ni(II), Zn(II) removal, whereas higher uptake of Cr(VI) is observed as the pH is decreased. A two-stage kinetic behavior is observed in the biosorption of Ni(II), Zn(II) and Cr(VI): very rapid initial biosorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher Ni(II), Zn(II) and Cr(VI) loading per unit weight of the sorbent. Decreasing the particle sizes of the Alternanthera philoxeroides biomass leads to an increase in the Ni(II), Zn(II) and Cr(VI) uptake per unit weight of the sorbent. All isothermal data are fairly well fitted with Langmuir equations. The thermodynamic parameter, DeltaG degrees, were calculated. The negative DeltaG degrees values of Cr(VI), Ni(II) and Zn(II) at various temperatures confirm the adsorption processes are spontaneous.  相似文献   

18.
This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.  相似文献   

19.
The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20+/-2 degrees C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55+/-2mg/l for Cr(VI) and 6+/-0.2mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey.  相似文献   

20.
针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(Ⅵ),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(Ⅵ)的影响。通过SEM-EDS、XRD和XPS等手段对n ZVI-SB去除Cr(Ⅵ)的机制进行分析。结果表明:n ZVI-SB对Cr(Ⅵ)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下,Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(Ⅵ)吸附量最大为150.60 mg/g。Cr(Ⅵ)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(Ⅵ)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(Ⅵ)作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号