首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochromic iridium oxide (IrOx) and iridium-tantalum oxide (IrTaOx) thin films were prepared by sputtering. Complex refractive indices were determined for samples deposited on indium-tin oxide covered glass in different colouration states, and for as-deposited samples on sapphire and Corning glass. The refractive index was found to be practically constant for both IrOx (∼1.3) and IrTaOx (∼2). The extinction coefficient was found to vary between the coloured and bleached states with ∼35% for IrOx and ∼55% for IrTaOx at 660 nm. This is believed to be a result of the removal of intraband transitions within the Ir t2g band during bleaching.  相似文献   

2.
Thin cuprous oxide electrochromic films on the transparent conductive electrodes were prepared by chemical electroless method. The films cycled in K+-based electrolyte revealed typical red-ox peaks with higher intensity compared to those in the Li+ and the Na+-based electrolytes. The durability of the cuprous oxide due to cycling into LiClO4 was about 60 cycles. The thermal treatment of the films invoked decrease in red-ox peak intensity, and thus deterioration in the electrochromic properties. The response time of the coloration and bleaching to an abrupt voltage change from −4.5 to +4.5 V and reverse was found to be in the range of about 10 s. The maximum light intensity modulation ability of the films, as the AM1.5 spectrum is taken for an input, was calculated to be about 65%.  相似文献   

3.
A detailed systematic study of the tungsten oxide thin films has been carried out using WO3 films after they were annealed at progressively increasing temperatures ranging from 350°C to 450°C in oxygen environments. The structural properties of the films were characterized using X-ray diffraction and Raman spectroscopy. The amorphous WO3 films remain as an amorphous phase up to 385°C and begin to crystallize at 390°C and then are completely crystallized at 450°C. Absorption peaks of the films are found to shift to a higher energy side with increasing annealing temperature up to 385°C and then shift abruptly to a lower energy as the films begin to crystallize at 390°C. Deconvolution of the absorption spectra shows that there are two different polaron transitions in the amorphous WO3 films.  相似文献   

4.
The characterization of electrochemical behavior of electrochromic intercalation device based on cobalt oxide thin film was carried out using the step potential excitation method. A method based on generating plots of current density as a function of passed charge has been applied for characterization of electrochromic cobalt oxide thin films using an aqueous KOH electrolyte. The device resistance and the intercalation capacity of the material are calculated. Dynamic built-in potential estimated from step potential experiment and plots of the built-in potential as function of the passed charge, VbiQ), are generated for intercalation process. The intercalation efficiency curve is obtained to confirm the nature of energy distribution of intercalation sites in electrochromic cobalt oxide.  相似文献   

5.
A comparison is made of the optical properties and electrochromic performance of two types of electrochromic device for use as variable transmission glazing. The devices employ respectively amorphous tungsten oxide and crystalline tungsten oxide as the active electrochromic layer. Both devices exhibit pronounced transmission modulation. Some measure of reflectance modulation is observable for the crystalline tungsten oxide device.  相似文献   

6.
Despite considerable improvements within the last decades, electrochromic (EC) window coatings are still too expensive to be applied in buildings on a large scale. Beside the manufacturing costs, wiring costs have to be added which may exceed the fabrication expenses of the electrochromic window. Therefore, self-powered electrochromic windows have been considered, where a semi-transparent photovoltaic (PV) cell provides the power to activate an electrochromic system deposited on top of the solar cell. The whole PVEC device consists of up to eight layers which must be deposited on large scales without short circuits or other failures. Recently, we came up with a much simpler idea where power generation and electrochromic properties are combined rather than just added as in the case of the PVEC cell. The whole device now is obtained by the deposition of only three layers and is highly transparent in the bleached state. Exposing it to sunlight and completing an external circuit the device can be colored within a few minutes, reducing the transmission by about 40%. Bleaching occurs either spontaneously by blocking the sunlight or is induced by a small rechargeable battery which can be incorporated in the external circuit and is charged from the device when exposed to sunlight.  相似文献   

7.
Films of iridium–tantalum oxide and iridium oxide have been prepared by sputtering and studied regarding their structure and electrochemical properties. X-ray diffraction and transmission electron microscopy showed an average grain size of 3–4 nm for both films. Point energy dispersive X-ray spectrometry showed an inhomogeneous distribution of iridium and tantalum indicating that the iridium–tantalum oxide may be a mixture of small IrO2 and Ta2O5 grains, which is consistent with the determined composition IrTa1.4O5.6. X-ray photoelectron spectroscopy gave valuable information on the stabilization process of the as-deposited films involving an uptake of oxygen, and on a coloration mechanism only including protons.  相似文献   

8.
Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. α-Fe2O3 to Fe(OH)2 and subsequently to δ-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films.  相似文献   

9.
The influence of the intercalate species on the quasi-static electrochromic behavior of tungsten-oxide-based devices is investigated. Two different electrolytes are used in the devices: an aqueous sulfuric acid solution, from which it is assumed that intercalation of hydrogen occurs; and a solution of lithium perchlorate in propylene carbonate, from which it is assumed that intercalation of lithium occurs. Experiments are performed in which a step-current of small magnitude is imposed through the device, and the corresponding time-dependence of the electrical potential and optical transmission are measured simultaneously. The behavior of the optical efficiency is relatively insensitive to the nature of the intercalate species, but the device potential is appreciably more sensitive to lithium intercalation than to hydrogen intercalation. The disparity in electrical behavior is likely due to increased strain effects and/or a diminished availability of sites associated with the larger lithium intercalate. It is shown that the electrical and optical behavior of the two types of devices may be related by a single linear scaling relation, indicating that the fundamental processes involved in the operation of the devices are similar.  相似文献   

10.
Electrochromic molybdenum oxide-doped iridium oxide thin films were prepared by using a pneumatic spray pyrolysis technique onto fluorine-doped tin oxide (FTO) coated conducting glass substrates. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride in different volume proportions and the resultant solution was used as a precursor for spraying. An aqueous electrolyte (0.5 N H2SO4) was used to study electrochromic properties of thin films using cyclic voltammetry (CV), chronoamperometry (CA) and spectrophotometry. During the potential scan the iridium oxide electrode switches between coloured and bleached state due to Ir+4–Ir+3 intervalency charge transfers. The optical density difference (ΔOD)λ=630 nm and colouration efficiency was maximum for 2% molybdenum oxide-doped sample. Moreover, loss in charge density during extended cycling is less than undoped and other doped (>2%) samples.  相似文献   

11.
An electrochromic device based on a five layer coating deposited on a glass sheet was produced. The layers were all obtained by physical vapour deposition in the same vacuum environment, using a commercial apparatus capable of producing thin films on large area substrates. Small (50×50 mm2) and medium (300×300 mm2) size specimens were prepared for preliminary study, to establish the electrochemical and optical performances of the device. Electrochemical measurements were performed on each active material, as well as on the whole specimens, in order to relate electrochemical properties to process conditions. Also, luminous and solar parameters were obtained from (near) normal incidence spectrophotometry in both the bleached and coloured states, to confirm the values used in the design phase of the electrochromic device. One of the specimens was also submitted to variable angle photometric and radiometric measurements, using an integrating sphere. This data was then used to evaluate the room luminance distribution and energy loads using a building simulation code.  相似文献   

12.
Electrochromic nickel oxide thin films were prepared by using a simple and inexpensive spray pyrolysis technique (SPT) onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel chloride solution. Transparent NiO-thin films were obtained at a substrate temperature 350°C. The films were cubic NiO with preferred orientation in the (1 1 1) direction. Infrared spectroscopy results show presence of free hydroxyl ion and water in nickel oxide thin films. The electrochromic properties of the thin films were studied in an aqueous alkaline electrolyte (0.1 M KOH) using cyclic voltammetry (CV), chronoamperometry (CA) and spectrophotometry. The films exhibit anodic electrochromism, changing colour from transparent to black. The colouration efficiency at 630 nm was calculated to be 37 cm2/C.  相似文献   

13.
Optical absorbance at 632.8 nm and the stress generated in tungsten oxide film due to photochromic and electrochromic effects were measured. WO3 thin films were deposited by reactive sputtering and the absorbance was obtained by measuring the optical transmittance of a laser beam through the film. The stress was calculated by measuring the substrate curvature and using the Stoney equation for multilayered films, since two layers are deposited onto a substrate for the electrochromism studies. The optical absorbance and the stress in the tungsten oxide film, as a function of UV irradiation time in photochromism and of inserted charge in electrochromism, are showed and discussed. In both effects the stresses generated were rendered as due to cation insertions into the film: H+ protons in photochromism and Li+ ions in electrochromism. The accuracy of the Stoney equation used for the stress calculation was also discussed.  相似文献   

14.
A diffusive solar cell window was designed and fabricated with uniformly distributed nanocomposite particles in a light diffusive plate that was sandwiched between two glass layers. The entire composite construction transfers light radiation to solar cells at the edge of the windows. It is based on a new combination of existing technologies because of it uses mature, mass-produced components - solar cells - as well as nanocomposite particles that are embedded inside the light-guide plate. They are integrated using an inexpensive and widely used method for making building windows. The result is an inexpensive, strong, stable, view quality-preserving solar energy-harvesting window that has no close competition. The diffusive solar cell window does not suffer from aging, and products that are made using diffusive solar cell window technology will be new entries to the solar power generation window market.  相似文献   

15.
In the last 10 years Gesimat has developed a large-area electrochromic glazing with an advanced polymer electrolyte and tungsten oxide and Prussian Blue as complementary electrochromic layers. This electrochromic glass has a switching range between 75% and 8% visible transmittance and between 56% and 6% solar transmittance. The polymer electrolyte is based on polyvinyl butyral (PVB), a polymer in use as an interlayer for laminated safety glass since more than 60 years. The electrochromic films are deposited by a new large-area electrodeposition process. For lamination the standard methods of laminated safety glass production can be used.  相似文献   

16.
This study examined the material and electrochromic properties of vanadium–titanium oxides (V–Ti oxides) as a counter electrode material in electrochromic devices. These oxides were deposited on an ITO substrate using a co-sputtering method at different levels of RF power. Electrochemical experiments of these oxides were carried out using half-cell and semi full-cell tests which are good methods for measuring the potential applied to each electrode. The change in electrochromic properties after 1000 cycles of a semi full-cell test was examined. Reversibility and durability of an electrochromic device were improved by increasing the titanium content in V–Ti oxides.  相似文献   

17.
Addition of tantalum oxide has been investigated in order to improve the electrochromic properties of iridium oxide. Films of iridium–tantalum oxide and iridium oxide have been prepared and studied with regard to their optical and electrochemical properties. It can be seen that the addition of tantalum decreases the optical absorption coefficient and increases the ion diffusion coefficient. The change of properties is thought to be a result of the dilution of colouring iridium oxide with the better ion conducting tantalum oxide.  相似文献   

18.
Tungsten oxide (WO3), vanadium and nickel-hydroxide (VOxHy and NiOxHy)-films were evaporated on glass and polymeric substrates covered with indium-tin oxide (ITO). Films of nickel-oxide (NiOx) were reactively sputtered from a nickel target. In order to obtain electrochromic devices the WO3 film was used as one electrode and with a polymeric solid state electrolyte (PSSE) glued to each of the other films which served as different counter electrodes. The films for themselves and the complete devices were investigated by optoelectrochemical and other methods. The most stable device was the WO3–VOxHy system which even improved the electrochromic properties after 3×104 cycles.  相似文献   

19.
The electrochromic (EC) behavior, the microstructure, and the morphology of sol–gel deposited nickel oxide (NiOx) coatings were investigated. The films were produced by spin and dip-coating techniques on indium tin oxide (ITO)/glass and Corning glass (2947) substrates.The coating solutions were prepared by reacting nickel(II) 2-ethylhexanoate as the precursor, and isopropanol as the solvent. NiOx was heat treated at 350 °C for 1 h. The surface morphology, crystal structure, and EC characteristics of the coatings were investigated by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), atomic force spectroscopy (AFM), X-ray diffractometry (XRD), and cyclic voltammetry (CV).SEM and AFM images revealed that the surface morphology and surface characteristics of the spin- and dip-coated films on both types of substrate were different. XRD spectra revealed that both films were amorphous, either on ITO or Corning glass substrates. CV showed a reversible electrochemical insertion or extraction of the K+ ions, cycled in 1 M KOH electrolyte, in both type of film. The crystal structure of the cycled films was found to be XRD amorphous. Spectroelectrochemistry demonstrated that dip-coated films were more stable up to 1000 coloration–bleaching cycles, whereas spin-coated films gradually degraded after 500 cycles.  相似文献   

20.
New methods are shown for lower temperature preparation of amorphous tungsten oxide thin film and preparation of crystalline iridium oxide thin film by sol–gel process using metal chloride as the starting materials and ethanol as a solvent. These electrochromic materials were combined with gel solid electrolyte, and preparation of fully solid-state electrochromic display (ECD) was made. The transmittance of the ECD could be made to change by 35% by applying a voltage of 3 V for 0.2 sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号