共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
针对网络流量复杂多杂特点,基于组合优化理论,提出一种混合核函数最小二乘支持向量机的网络流量预测模型。首先,基于混沌理论将一维网络流量变为多维时间序列,然后,采用多项式核函数和高斯径向基核函数构建混合核函数,并将训练样本输入到最小二乘支持向量机中学习,最后,采用真实网络流量数据对模型性能进行测试。结果表明,相对于单核函数最小二乘支持向量机及其它网络流量预测模型,模型能够准确捕捉网络流量变化规律,有效地提高了网络流量的预测精度,而且具有一定的鲁棒性。 相似文献
3.
基于最小二乘支持向量机的预测控制 总被引:2,自引:0,他引:2
最小二乘支持向量机(LS—SVM)方法克服了经典二次规划方法求解支持向量机的维数灾问题。适合于大样本的学习。提出一种新的基于LS—SVM模型的预测控制结构,对一典型非线性系统-连续搅拌槽反应器(CSTR)的仿真表明,该控制方案表现出优良的控制品质并能适应被控对象参数的变化,具有较强的鲁棒性和自适应能力。 相似文献
4.
基于核的偏最小二乘特征提取的最小二乘支持向量机回归方法 总被引:4,自引:0,他引:4
提出了用核的偏最小二乘进行特征提取.首先把初始输入映射到高维特征空间,然后在高维特征空间中计算得分向量,降低样本的维数,再用最小二乘支持向量机进行回归.通过实验表明,这种方法得到的效果优于没有特征提取的回归.同时与PLS提取特征相比,KPLS分析效果更好. 相似文献
5.
提出一种基于压缩感知(Compressive sensing, CS)和多分辨分析(Multi-resolution analysis, MRA)的多尺度最小二乘支持向量机(Least squares support vector machine, LS-SVM). 首先将多尺度小波函数作为支持向量核, 推导出多尺度最小二乘支持向量机模型, 然后基于压缩感知理论, 利用最小二乘匹配追踪(Least squares orthogonal matching pursuit, LS-OMP)算法对多尺度最小二乘支持向量机的支持向量进行稀疏化, 最后用稀疏的支持向量实现函数回归. 实验结果表明, 本文方法利用不同尺度小波核逼近信号的不同细节, 而且以比较少的支持向量能达到很好的泛化性能, 大大降低了运算成本, 相比普通最小二乘支持向量机, 具有更优越的表现力. 相似文献
6.
为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法.按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型.以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好. 相似文献
7.
石磊 《数字社区&智能家居》2007,(20)
函数拟合通常要在有限的训练样本下对函数变量之间的关系做出预测,在实践中由于训练样本有限,并且训练样本本身存在噪音和孤立点,用传统的方法进行函数拟合的结果往往不能满足要求.本文主要利用最小二乘支持向量机对函数进行拟合.首先介绍了最小二乘支持向量机的工作原理,并对参数选择方法进行了研究,然后通过仿真实验对利用最小二乘支持向量机进行函数拟合的效果加以对比说明. 相似文献
8.
最小二乘支持向量机不需要求解凸二次规划问题,通过求解一组线性方程而获得最优分类面,但是,最小二乘支持向量机失去了解的稀疏性,当训练样本数量较大时,算法的计算量非常大。提出了一种快速最小二乘支持向量机算法,在保证支持向量机推广能力的同时,算法的速度得到了提高,尤其是当训练样本数量较大时算法的速度优势更明显。新算法通过选择那些支持值较大样本作为训练样本,以减少训练样本数量,提高算法的速度;然后,利用最小二乘支持向量机算法获得近似最优解。实验结果显示,新算法的训练速度确实较快。 相似文献
9.
最小二乘支持向量机算法研究 总被引:17,自引:0,他引:17
1 引言支持向量机(SVM,Support Vector Machines)是基于结构风险最小化的统计学习方法,它具有完备的统计学习理论基础和出色的学习性能,在模式识别和函数估计中得到了有效的应用(Vapnik,1995,1998)。支持向量机方法一方面通过把数据映射到高维空间,解决原始空间中数据线性不可分问题;另一方面,通过构造最优分类超平面进行数据分类。神经网络通过基于梯度迭代的方法进行数据学习,容易陷入局部最小值,支持向量机是通过解决一个二次规划问题,来获得 相似文献
10.
冼广铭 《计算机工程与应用》2008,44(18):36-38
针对目前使用的SVM核函数在回归中不能逼近任意目标函数的问题,在支持向量机的核方法和小波框架理论的基础上,提出了LS-WSVM结构模型。该模型在LS-SVM中使用一种新的由小波构成的SVM核函数。实验结果表明,与标准的SVM及LS-SVM比较起来,在同等条件下,LS-WSVM在函数回归方面LS-WSVM具有优良的逼近性能,拟合效果更为细腻。 相似文献
11.
针对多核最小二乘支持向量机(multiple kernel least squares support vector machine,MK-LSSVM)忽略了核函数的代价以及缺乏稀疏性的问题,提出了一种代价约束的稀疏多核最小二乘支持向量机方法.将MK-LSSVM的原始优化问题转化为二阶锥规划形式,引入核函数代价因子,约束复杂核函数的权重,以节约变量存储空间利计算时间,利用Schmidt 正交化理论约简核矩阵,进一步减小计算量,并根据支持向量的数目以及活动核函数的类型评估多核学习的总代价.测试数据集仿真结果表明,相比传统的MK-LSSVM,该方法利用更少的支持向量和更简单的组合核函数达到了相同的精度要求,代价更小.采用该方法预测浮选回收率的代价值降低了27.56. 相似文献
12.
最小二乘支持向量机采用最小二乘线性系统代替传统的支持向量即采用二次规划方法解决模式识别问题,能够有效地减少计算的复杂性。但最小二乘支持向量机失去了对支持向量的稀疏性。文中提出了一种基于边界近邻的最小二乘支持向量机,采用寻找边界近邻的方法对训练样本进行修剪,以减少了支持向量的数目。将边界近邻最小二乘支持向量机用来解决由1-a-r(one-against-rest)方法构造的支持向量机分类问题,有效地克服了用1-a-r(one-against-rest)方法构造的支持向量机分类器训练速度慢、计算资源需求比较大、存在拒分区域等缺点。实验结果表明,采用边界近邻最小二乘支持向量机分类器,识别精度和识别速度都得到了提高。 相似文献
13.
从支持向量机(SupportVectorMachine,SVM)学习理论出发,介绍了最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)的原理[1],并详细描述了使用共轭梯度(ConjugateGradient,CG)算法来实现LS-SVM。结合通信中常见的非线性均衡问题,讨论了在信道呈现非线性,色噪声干扰情况下,使用LS-SVM实现均衡任务,通过同最优贝叶斯均衡器性能的比较,证明了LS-SVM处理非线性均衡问题的有效性。在实际数字通信中,接收端可以在不知道信道状态的前提下,通过接收训练序列并对其进行学习,确定均衡器模型参数,从而对未知的发送信号进行预测。 相似文献
14.
最小二乘支持向量机采用最小二乘线性系统代替传统的支持向量即采用二次规划方法解决模式识别问题,能够有效地减少计算的复杂性.但最小二乘支持向量机失去了对支持向量的稀疏性.文中提出了一种基于边界近邻的最小二乘支持向量机,采用寻找边界近邻的方法对训练样本进行修剪,以减少了支持向量的数目.将边界近邻最小二乘支持向量机用来解决由1-a-r(one-against-rest)方法构造的支持向量机分类问题,有效地克服了用1-a-r(one-against-rest)方法构造的支持向量机分类器训练速度慢、计算资源需求比较大、存在拒分区域等缺点.实验结果表明,采用边界近邻最小二乘支持向量机分类器,识别精度和识别速度都得到了提高. 相似文献
15.
Least Squares Support Vector Machine Classifiers 总被引:396,自引:1,他引:396
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem. 相似文献
16.
支持向量机是一种以统计学习理论为基础的机器学习算法,着重解决小样本的建模问题,并且对非线性高维数据具有较好的处理能力。通常对于多维特征的数据,会对每一维数据做归一化处理以消除量纲的影响,但缺点在于忽视了各维特征的权重差异。提出了一种加权最小二乘支持向量机的建模方法,通过熵值法确定每一维特征的权重,根据特征权重对数据进行加权处理,最后由最小二乘支持向量机建立该系统模型。实验表明,对于多维特征的数据,所提方法具有更好的建模效果。 相似文献