共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
钛酸钾晶须增强聚四氟乙烯复合材料摩擦磨损机制的研究 总被引:3,自引:2,他引:1
研究了钛酸钾晶须(PTW)对聚四氟乙烯(PTFE)复合材料力学及摩擦学性能的影响,并与碳纤维(CF)和玻璃纤维(GF)的填充效果进行了比较.结果表明:加入PTW后,PTFE的硬度、冲击强度、拉伸强度、弯曲强度、压缩强度及耐磨性能比纯PTFE的分别约提高了10%、30%、20%、15%、20%和300倍;PTW/PTFE的耐磨性能要优于GF/PTFE及CF/PTFE.SEM研究表明: PTW/PTFE的内部结构比GF/PTFE及CF/PTFE的均匀致密,具有显微增强效果;PTW/PTFE的磨损面比GF/PTFE及CF/PTFE的要平整,其转移膜也较GF/PTFE及CF/PTFE的更为均匀、连续、致密. 相似文献
4.
5.
6.
研究挤压型不锈钢向心关节轴承在不同的试验参数下的摩擦磨损性能,分析其摩擦磨损形式。结果表明:不锈钢向心关节轴承的磨损形式以黏着磨损和磨粒磨损为主,磨损量随载荷的增大而增大,随摆动频率先减小而后增大;摩擦因数随载荷和摆动频率的增大而减小。 相似文献
7.
8.
9.
10.
11.
12.
碳材料填充 PTFE 复合材料摩擦磨损性能 总被引:1,自引:1,他引:1
利用 MM-200 型磨损试验机考察了石墨、碳纤维、硬碳和软碳填充 PTFE 复合材料的摩擦磨损性能,采用扫描电子显微镜观察分析磨损表面形貌及磨损机制.结果表明,碳材料可以不同程度地提高 PTFE 的耐磨性,它们对PT-FE 耐磨性的提高程度各不相同,其中以硬碳填充 PTFE 复合材料的磨损质量损失最小,石墨填充 PTFE 复合材料的磨损质量损失较大;不同填充材料对 PTFE 摩擦因数的影响各不相同,其中石墨填充 PTFE 的摩擦因数较小.石墨、软碳填允复合材料磨损机制以粘着磨损为主,硬碳、碳纤维复合材料,则表现为粘着磨损和磨粒磨损. 相似文献
13.
14.
碳纳米管增强PTFE复合材料摩擦磨损性能研究 总被引:1,自引:0,他引:1
以不同含量的CNTs(碳纳米管)为填料制备了PTFE基复合材料,测量其硬度,在M-2000型摩擦磨损试验机上研究其摩擦磨损行为。结果表明,CNTs能提高PTFE的硬度,CNTs/PTFE复合材料的耐磨性能明显优于纯PT-FE,当CNTs的质量分数为3%时,复合材料的耐磨性能大幅度提高。其摩擦因数随着CNTs含量的增加而加大,当CNTs的质量分数为1%时,摩擦因数随载荷的增加而减少,CNTs的质量分数为3%和5%时,摩擦因数随载荷的增加而增大。SEM观察发现:纯PTFE的断面上分布着大量的带状结构,而填充CNTs后,摩擦表面较平整光滑,表明CNTs作为填料可有效地抑制PTFE的犁削和粘着磨损。 相似文献
15.
Solid lubricants used in aerospace applications must provide low friction and a predictable operation life over an extreme
range of temperatures, environments and contact conditions. PTFE and PTFE composites have shown favorable tribological performance
as solid lubricants. This study evaluates the effect of temperature on the friction coefficient of neat PTFE, a PTFE/PEEK
composite and an expanded PTFE (ePTFE)/epoxy coating. These experiments evaluate friction coefficient over a temperature span
which, to the investigators’ knowledge, has not been previously examined. Results show a monotonic increase in friction coefficient
as sample surface temperature was decreased from 317 to 173 K for all three samples. The frictional performance of these and
other published solid lubricant polymers was modeled using an adjusted Arrhenius equation, which correlates the coefficient
of friction of the polymer materials to their viscoelastic behavior. A model fit of all the polymer data from 173 to 450 K
gives an activation energy of 3.7 kJ/mol. This value suggests that breaking of van der Waals bonds is the likely mechanism
responsible for the frictional behavior over this temperature range. 相似文献
16.
SiO2填充聚四氟乙烯复合材料的摩擦学行为研究 总被引:7,自引:3,他引:7
用机械共混和冷压成型、热烧结的方法制备了琐体积含量不同粒径的SiO2填充PTFE样品,用M-2000摩擦磨损试验机评价了不同样品在干摩擦下的摩擦学性能;用X射线能量损失谱(EDS)观察分析了摩前后Si元素在样品表面的分布情况,结果表明:在本实验所采用的实验条件下,SiO2/PTFE复合材料的摩擦系数随SiO2体积含量的增加而增大,抗磨损能力则有一个最佳含量;填料粒径不同其体积填充分数对复合材料摩擦磨损性能的作用规律不同,在相同的体积分数下,粗SiO2填充PTFE的摩擦系数小于细SiO2填充PTFE的摩擦系数,且其随SiO2填充分数增加而增大的趋势远小于细SiO2填充PTFE;其具有最好抗磨能力的最佳体积填充含量也大于细SiO2的体积填充含量,SiO2这种填充作用规律可由其在PTFE基体中的形态结构特征来解释。 相似文献
17.
18.
软碳填充PTFE复合材料摩擦磨损性能研究 总被引:1,自引:1,他引:0
以不同含量的软碳为填料制备了PTFE基复合材料,测量了其机械性能,在M-2000型摩擦磨损试验机上研究其摩擦磨损行为,并探讨了其磨损机制.结果表明:软碳能提高PTFE复合材料的硬度,软碳/PTFE复合材料的耐磨性能优于纯PTFE,当软碳质量分数为7%时其耐磨性能最好.复合材料的摩擦因数随着软碳含量的增加而增加.摩擦表面的SEM观察发现:纯PTFE的摩擦表面分布着较明显的犁削和黏着磨损的痕迹,复合材料的摩擦表面均出现犁削,随着软碳含量的增加,犁削现象减轻,这表明以软碳作为填料可有效地抑制PTFE的磨损. 相似文献
19.
采用冷压成型、自由烧结工艺分别制备了青铜粉、聚酰亚胺、二硫化钼和石墨填充改性的聚四氟乙烯复合材料,在改装的M-2000型摩擦磨损试验机上考察了材料的二次转移摩擦学性能;用扫描电子显微镜对磨损表面进行观察和分析。结果表明:增加载荷有利于提高转移膜与基底的结合强度;填料种类对PTFE复合材料二次转移膜的摩擦学性能有影响,在本实验条件下(干摩擦、室温、滑动速度为0.42m/s、接触载荷为30N),以PTFE复合材料作为润滑剂提供源使用时,PTFE/MoS2、PTFE/Graphite复合材料形成的二次转移膜最好,PTFE/Bronze复合材料二次转移膜次之,PTFE/PI复合材料形成二次转移膜的能力最差。 相似文献
20.
纳米高岭土和石墨填充PTFE复合材料摩擦磨损性能 总被引:1,自引:0,他引:1
采用模压法制备石墨和纳米高岭土填充的聚四氟乙烯(PTFE)复合材料,在往复式滑动摩擦磨损试验机上测试了其的干滑动摩擦磨损性能,试验机往复频率为1.0 Hz.用扫描电镜观测和分析试样的磨损表面.结果表明:石墨和纳米高岭土共同填充的PTFE,在改善其耐磨性的同时,又保持了低的摩擦因数,其中含10%高岭土和5%石墨的PTFE复合材料表现最佳,稳定阶段的摩擦因数保持在0.11左右,耐磨性比纯PTFE提高了大约90倍. 相似文献