首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three compounds, K2(H2O)4H2SiMo12O40 · 7H2O (1), K2Na2(H2O)4SiW12O40 · 4H2O (2), and Na4(H2O)8SiMo12O40 · 6H2O (3) have been synthesized and structurally characterized by single-crystal X-ray analysis, IR, and thermogravimetry. Compounds 1 and 2 both show the high symmetry trigonal space group P3221 and a novel 3D network structure. The Keggin anions [SiM12O40]4−(M = Mo, W) are linked by potassium or sodium cations to generate hexagon-shaped channels along the c-axis, in which water molecules are accommodated. Compound 3 is tetragonal, space group P4/mnc constructed from [SiMo12O40]4− anions and Na ions.  相似文献   

2.
H3PMo12O40 catalyst was chemically immobilized on the surface modified CMK-3 (SM-CMK-3) support as a charge compensating component, by taking advantage of the overall negative charge of [PMo12O40]3−. The supported H3PMo12O40/SM-CMK-3 catalyst was characterized to have high surface area (≈1000 m2/g) and relatively large pore volume (0.83 cm3/g). The H3PMo12O40/SM-CMK-3 catalyst was applied to the vapor-phase 2-propanol conversion reaction. The H3PMo12O40/SM-CMK-3 catalyst exhibited higher 2-propanol conversion than the unsupported H3PMo12O40 and the impregnated H3PMo12O40 on CMK-3. Furthermore, the PMo12/SM-CMK-3 catalyst showed the enhanced oxidation activity (acetone formation) and the suppressed acid catalytic activity (propylene formation) compared to the other two catalysts. It is believed that [PMo12O40]3− species were chemically and finely immobilized on the SM-CMK-3 support as charge matching species, and thus, the PMo12/SM-CMK-3 catalyst showed an excellent oxidation activity.  相似文献   

3.
Layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24)·4H2O, was prepared via anion exchange reaction of the synthetic precursor, Mg4Al2(OH)12TA·xH2O (TA2−=terephthalate), and [W7O24]6− ion. Some physico-chemical properties were measured and the preparation conditions were studied. Trace aqueous organocholorine pesticide, hexachlorocyclohexane (HCH), was totally degraded and mineralized into CO2 and HCl by irradiating a Mg12Al6(OH)36(W7O24)·4H2O suspension in the near UV area. Disappearance of trace HCH follows Langmuir–Hinshelwood first-order kinetics. The model and mechanism for the photocatalytic degradation of HCH on the Mg12Al6(OH)36(W7O24)·4H2O were proposed, indicating that the interlayer space is the reaction field, and that photogeneration of OH√ radicals are responsible for the degradation pathway.  相似文献   

4.
Mo/Ze catalysts prepared by incipient wetness impregnation of a Faujasite zeolite with ammonium heptamolybdate solutions have been characterized after calcination at 500 °C and transfer in wet atmosphere. Raman spectroscopy clearly evidences the formation of [SiMo12O40]4− heteropolyanions. This formation, through extraction of Si atoms, is not observed before the calcination, the Anderson [AlMo6O24H6]3− entity being the main species formed during the impregnation–maturation.  相似文献   

5.
We report the kinetic parameters for the water–gas shift (WGS) reaction on Pt catalysts supported on ceria and alumina under fuel reformer conditions for fuel cell applications (6.8% CO, 8.5% CO2, 22% H2O, 37.3% H2, and 25.4% Ar) at a total pressure of 1 atm and in the temperature range of 180–345 °C. When ceria was used as a support, the turnover rate (TOR) for WGS was 30 times that on alumina supported Pt catalysts. The overall WGS reaction rate (r) on Pt/alumina catalysts as a function of the forward rate (rf) was found to be: r = rf(1 − β), where rf = kf[CO]0.1[H2O]1.0[CO2]−0.1[H2]−0.5, kf is the forward rate constant, β = ([CO2][H2])/(Keq[CO][H2O]) is the approach to equilibrium, and Keq is the equilibrium constant for the WGS reaction. The negative apparent reaction orders indicate inhibition of the forward rate by CO2 and H2. The surface is saturated with CO on Pt under reaction conditions as confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The small positive apparent reaction order for CO, in concert with the negative order for H2 and the high CO coverage is explained by a decrease in the heat of adsorption as the CO coverage increases. Kinetic models based on redox-type mechanisms can explain the observed reaction kinetics and can qualitatively predict the changes in CO coverage observed in the DRIFTS study.  相似文献   

6.
The stoichiometry of the polyanions formed by the action of nitric acid on sodium ortho-vanadate solution has been studied by means of electrometric techniques involving glass electrode and conductometric titrations as well as Job’s method of continuous variation. The well defined inflections and breaks in the titration curves and maxima from continuous variation study provide cogent evidence for the existence of the anions, pyro-V2O74−, meta-VO3 and poly-H2V10O284− corresponding to the ratios of VO43−:H+ as 1:1, 1:2 and 1:2.6 in the pH ranges (10.1–10.7), (7.0–7.5) and (3.4–3.8), respectively. Similar titrations between alkali and V2O5 solutions also confirm the existence of the same anions. The interaction of lead nitrate with sodium vanadate solutions, at specific pH levels 12.4, 10.5, 7.4 and 3.6 was also studied by pH and conductometric titrations. The end-points obtained from the sharp inflections in the titration curves provide definite evidence for the formation of lead ortho-3PbO·V2O5, pyro-2PbO·V2O5 and meta-PbO·V2O5 vanadates in the vicinity of pH 8.2, 6.5 and 5.6, respectively.  相似文献   

7.
Nitrogen-containing mesostructured cellular foam carbon (N-MCF-C) was synthesized by a templating method using mesostructured cellular foam silica (MCF-S) and polypyrrole as a templating agent and a carbon precursor, respectively. The N-MCF-C was then modified to have a positive charge, and thus, to provide a site for the immobilization of [PMo10V2O40]5−. By taking advantage of the overall negative charge of [PMo10V2O40]5−, H5PMo10V2O40 (PMo10V2) catalyst was chemically immobilized on the N-MCF-C support as a charge-matching component. Characterization results showed that the PMo10V2 catalyst was finely dispersed on the N-MCF-C support via strong chemical interaction, and that the pore structure of N-MCF-C was still maintained even after the immobilization of PMo10V2. In the vapor-phase oxidation of benzyl alcohol, the PMo10V2/N-MCF-C catalyst showed a higher conversion and a higher oxidation activity (formation of benzaldehyde) than the unsupported PMo10V2 and PMo10V2/MCF-S catalysts.  相似文献   

8.
The influence of weakly coordinating anions with different shapes and substituents has been studied to get the overoxidation resistance limit of the material, ORL. The anions utilized are derivatives of [Co(C2B9H11)2], [B12H12]2− and [B12H11NH3]. The following tendencies have been established (1) boron cluster monoanions are to date the anions that offer the highest stability to overoxidation of PPy doped materials (2) the ORL stability of the material can not be attributed only to the shape of the cluster (3) monoanionic clusters are far superior than dianionic to get an ORL rise (4) cluster charge density reduction results in ORL rise as has been observed in [Co(C2B9H11)2] after incorporation of electron-withdrawing substituents with no electron back-donation (5) globular, rigid and large monoanions are less suitable for enhanced ORL values than elongated and non-rigid species (6) adequate anion's substitution produce a rise in the ORL of the material, thus polyether side-arms are beneficial with [Co(C2B9H11)2], whereas, T-shaped methylaryl groups are appealing in [B12H11NH3] based materials, respectively, (7) substituents on the anions usually imply higher difficulty in the materials' growth. The high boron contents in these materials has permitted to learn on the fate of the doping anions during the overoxidation process. There is a built-up of the concentration of the doping anion in the electrolyte near surface area, whereas, a depletion is observed in the nearest inner layers.  相似文献   

9.
This paper deals with the use of Anderson heteropolyanions as alternative starting materials to the ammonium heptamolybdate and cobalt nitrate for the preparation of hydrotreatment oxidic precursors. Ammonium and cobalt salts of molybdocobaltate anions were synthesized and impregnated on alumina. The evolution of these compounds along the different steps of preparation of the oxidic precursors has been followed using various physical techniques such as Raman, XAS and UV–vis spectroscopies. It has been shown that the nature of the surface oxomolybdenum phase strongly depends on the nature of the starting salt. After sulfidation under H2/H2S, the performances of these new catalysts have been evaluated in hydrodesulfuration of thiophene. It appears that the cobalt salt of the decamolybdocobaltate anion [Co2Mo10O38H4]6−, with a Co/Mo ratio equal to 0.5, allows us to improve the catalytic conversion by comparison to reference catalysts prepared with ammonium heptamolybdate and cobalt nitrate as starting materials. It has been shown that this improvement is due to the preservation of the heteropolyanionic structure up to the drying step.  相似文献   

10.
A salt of ruthenium-containing polyoxomolybdate anion ([Ru2Mo14O50]10− or [Ru2Mo14O52]14−; Ru2Mo14) was synthesized by mixing ruthenium chloride and sodium molybdate in a buffer solution (acetic acid–ammonium acetate) at pH 5. The polyanion, Ru2Mo14, was loaded on a silica carrier chemically modified with a silane coupling agent having a 1,2-diaminoethyl group (DAPS–SiO2). X-ray diffraction, FT-IR and surface area measurements revealed that Ru2Mo14 was highly dispersed on DAPS–SiO2 up to 20 wt.% loading. The highly dispersed Ru2Mo14 exhibited a high level of activity for oxidative dehydrogenation of methanol to formaldehyde with a high selectivity, whereas combustion of methanol occurred on the bulky salt of Ru2Mo14 and ruthenium catalyst supported on a SiO2 carrier.  相似文献   

11.
本文利用溶液法制备了K2Ba[B4O5(OH)4]2·8H2O,并将其进行热处理制备得到了KBaB5O9,利用XRD、FT-IR、TG-DTA-DTG对样品进行了表征。分析研究了由K2Ba[B4O5(OH)4]2·8H2O热处理制备KBaB5O9过程中的物相变化过程,其物相变化经历脱结晶水、脱羟基、重结晶、再分解、熔融再结晶5个阶段,其中结晶水的脱失分两步进行。运用Kissinger法、Flynn-Wall-Ozawa法、Šatava-Šesták法对K2Ba[B4O5(OH)4]2·8H2O结晶水第二步脱失过程的动力学参数进行了计算,可知K2Ba[B4O5(OH)4]2·8H2O结晶水第二步脱失过程的活化能Es为151.94 kJ/mol,指前因子的对数值lg As为21.25 min-1,机理函数G(α)=(1-2α/3)-(1-α)2/3(其中α为转化率)。  相似文献   

12.
A series of layered double hydroxides (LDHs) pillared with the Keggin ion H2W12O406− has been synthesized with final Mg:Al ratios of 1.75:1, 2.31:1 and 3.51:1 by ion exchange reaction of the LDH-hydroxide and LDH-adipate precursors. In each case, the pillared product was characterized by specific BET N2 surface areas of more than 110 m2 g−1 and micropore volumes in excess of 0.026 ml g−1. The micropore size distribution plots obtained from the argon adsorption isotherms indicate that the micropore diameters become smaller as the surface charge density of the LDH increases. A study was also performed on each of the LDH precursors in order to determine any problematic steps in the overall synthesis. Significant differences were noticed in the POXRD patterns of the LDH-adipate precursor; these are believed to be due to differences in the orientation and degree of order of the adipate anions in the gallery space of the LDH. It was found that adipate anions orientated with the long axis perpendicular to the inorganic layers were easier to exchange than those where the long axis was aligned parallel to the inorganic layers.  相似文献   

13.
This work deals with poly(ethylene oxide), PEO–MX (M=Li, K and Cs) amorphous electrolytes with X–X, [CF3SO2NCH2(CH2OCH2)2CH2NSO2CF3]2− (EDSA) and [CF3SO2NCH2CH2(CH2OCH2)3CH2CH2NSO2CF3]2− (TTSA) disulfonamide anions. These dianions have X end-groups identical to anions [CF3SO2N(CH2)2OCH3] (MESA) and [CF3SO2N(CH2)3OCH3] (MPSA), one of which (MPSA) was reported to yield chelate-like associated species (presumably LiX2 triplets) at concentrations above EO/Li=20 in PEO. This feature of LiMPSA, evidenced through glass transition temperature (Tg) measurements, does not apply to Li2EDSA and Li2TTSA. Though none of these lithium salts form crystalline intermediate compounds with PEO, the limit of solubility of LiMESA (EO/Li=16) does not allow a clarification of this point for this salt. At lower concentrations, however, a conductivity comparison with the potassium and caesium salts shows that the apparent degree of dissociation (=CLi+/CLi) of LiMESA is comparable to that of LiMPSA. As opposed to both these salts and to some extent to Li2EDSA, a much greater dissociation takes place for Li2TTSA, the anion of which contains an inner, third ether group in its structure.  相似文献   

14.
Friedels salt, the chlorinated compound 3CaO · Al2O3 · CaCl2 · 10H2O (AFm phase), presents a structural phase transition at about 30°C from a monoclinic to a rhombohedral phase. It has been studied by X-ray powder diffraction and optical microscopy in transmitted light with crossed polarisers on single crystals prepared by hydrothermal synthesis. The high temperature phase was determined at 37°C from X-ray single crystal diffraction data. The compound crystallises in the space group R c with lattice parameters of a = 5.7358(6)Å and c = 46.849(9)Å (Z = 3 and Dx = 2.111 g/cm3). The refinement of 498 independent reflections with I > 2σ(I) led to a residual factor of 7.1%. The Friedels salt can be described as a layered structure with positively charged main layers of composition [Ca2Al(OH)6]+ and negatively charged layers of composition [Cl,2H2O]. The chloride anions are surrounded by 10 hydrogen atoms, of which six belong to hydroxyl groups and four to water molecules. The structural phase transition may be related to the size of the chloride anions, which are not adapted to the octahedral cavity formed by bonded water molecules.  相似文献   

15.
The production and decay of singlet molecular oxygen (1O2) in TiO2 photocatalysis were investigated by monitoring its phosphorescence under various reaction conditions. First, the effects of additives such as KBr, KSCN, KI, H2O2, and ethanol on the amount of 1O2 produced by photo excitation of P25 TiO2 were measured. The same additives were employed to investigate the effect on the amount of O2 produced. Comparison between the effects on 1O2 and O2 suggested that 1O2 is formed by the electron transfer mechanism, the reduction of molecular oxygens to O2 by photogenerated electrons and the subsequent oxidation of O2 to 1O2 by photogenerated holes. The formation of 1O2 decreased at pH < 5 and pH > 11, indicating that the intermediate O2 is stabilized at the terminal OH site of the TiO2 surface in the pH range of 5 < pH < 11. Eighteen commercially available TiO2 photocatalysts were compared on the formation of 1O2 and O2 in an aqueous suspension system. The formation of 1O2 was increased with decreasing size of TiO2 particles, indicating that a large specific surface area causes a higher possibility of reduction producing O2 and then a large amount of 1O2 is formed. The difference in the crystal phase (rutile and anatase) did not affect the formation of 1O2.  相似文献   

16.
Poly-p-phenylene (PPP) was synthesized from benzene according to the Kovacic method. Electrodes were made from this electronic insulator by cold- or hot-pressing of the loose, brown powder, under the addition of 7.5 wt. % soot (Corax L®, Degussa AG). The electrochemical insertion and removal of anions HSO4, ClO4 in this material in aqueous solutions of the corresponding acids was investigated by slow cyclic voltammetry.

Initially, only a surface layer of about 0.1 mm thickness takes part in the electrochemical processes, which are reversible. A maximum concentration of anions in the solid of [(−C6H4−)+7 A] is attainable. The maximum degree of insertion is equal to 0.14. The insertion potential UI shifts strongly into the negative direction with increasing concentration c of the acid. A linear UI/c relationship is observed as in the case of graphite, where the intercalation potential is more positive by 20–200 mV for the same electrolyte. The round trip current efficiency for the insertion/removal cycle increases with increasing acid concentration attaining 100% in 14 M H2SO4 or 11.3 M CHlO4. For a given concentration, increases in the same order as with graphite (H2SO4 < HClO4 < HBF4), being somewhat lower for a given electrolyte composition. From anodic current limitation (jlim = 5–10 mA cm−2), a diffusion coefficient of about D = 2 × 10−7 cm2 s−1 is derived for the transport of anions in the bulk of PPP. The striking similarity of our results to former findings with graphite is thoroughly discussed. Some general conclusions are derived thereof.  相似文献   


17.
The Lux—Flood acid—base equilibrium SO3 + O2− SO42− in molten equimolar NaCl/KCl at 750°C has been investigated using conventional chronopotentiometry. The equilibrium constant for this reaction is shown to be very high (K > 102). Thus the sulphate ion in solution in this melt does not decompose unless a very strong acid such as the metaphosphate ion is added to the melt. This removes oxide ions according to the reaction. 2PO3 + SO42− → SO3 + P2O74− The pyrophosphate anion is not a sufficiently strong acid to remove oxide from sulphate.  相似文献   

18.
An in situ infrared spectroscopic study was conducted to elucidate the reaction pathways for low-temperature methanol synthesis in a catalytic system composed of Ni(CO)4 and CH3OK (denoted as Ni(CO)4/CH3OK). The reaction was conducted in a liquid medium at 313–333 K with an initial pressure of 3.0 MPa. When CH3OK was added to Ni(CO)4 solution at 293 K, different carbonylnickelates, [Ni5(CO)12]2−, [Ni6(CO)12]2− and [Ni(CO)3(COOCH3)], were immediately formed from Ni(CO)4. The species and the composition of the carbonylnickel complexes varied with temperature. The variations in concentrations of methanol (MeOH) and methyl formate (MF) during the run, which were determined from their IR absorptions, indicated a pattern characteristic of consecutive reactions with MF as an intermediate. Thus, it was shown that methanol was produced through the carbonylation of MeOH to MF and the subsequent hydrogenation of MF to MeOH. Stable hydridocarbonylnickel anions, [HNi(CO)3] and/or [HNi2(CO)6], were observed together with a small amount of Ni(CO)4 throughout the methanol synthesis. Since Ni(CO)4 alone showed no activity for the hydrogenation of MF, the hydridocarbonylnickel anions generated in the presence of CH3OK must be responsible for the reaction. The dual role of CH3OK in the catalytic system was stated.  相似文献   

19.
Raman characterization revealed that the Keggin anion structure of H4PVMo11O40 is inherently unstable upon heat treatment and loss of water. Vanadyl and molybdenyl species are expelled from the Keggin cage and defective Keggin structures are formed. These defective structures further disintegrate to presumably Mo3O13 triads of the former Keggin. These Keggin fragments oligomerize at later stages to molybdenum oxygen clusters comparable to hepta- or octamolybdates. The final disintegration and structural reorganization product is MoO3. This disintegration and recondensation process seems to be strongly affected by the heating rate and hence the presence of water in the sample. Only partial expulsion of V occurred under moderate dehydration conditions. The absence of water during heat treatments stabilizes the intermediate defective structures. Raman spectroscopy proved that free polyacids are unstable under catalytic partial oxidation conditions. Therefore, it can be suggested that intact Keggin anions are not the active species within an operating partial oxidation catalyst. From this Raman spectroscopy study it may be inferred that the structurally reorganized intermediates are relevant for the catalytic action. The Raman investigations of the HPA decomposition additionally revealed a dependency of the decomposition process on the reactive atmosphere and the presence of Cs. The presence of Cs led to a partial stabilization of the structural disintegration products of PVMo11 and to the formation of the thermodynamically stable, but catalytically inactive Cs3-salt. Cs also inhibited the condensation of MoO3-type oxides. O2 present in the gas phase also led to stabilization of the structural reorganization intermediates. Importantly, the presence of water did not lead to a stabilization of the intact Keggin structure. In contrast, hydrolysis of the Keggin anions seemed to be enhanced compared to the water-free situation. This observation is of high importance because water is added to the feed in industrial partial oxidation reactions. Hence, under industrial conditions, HPA-derived catalysts are inherently unstable and cannot contain intact Keggin anions at their active surface. Catalytic partial oxidation conditions even led to a more pronounced structural reorganization and amorphous suboxides of the MoO3−x type seemed to be formed. Hence, heteropolyacids have to be understood only as defined molecular precursor compound.  相似文献   

20.
Nafion supported catalytic membranes were found to be effective in the partial oxidation of propane to oxygenates with H2O2 in the presence of Fe2+ under mild conditions. The influence of [Fe2+] and [H2O2] on the reaction rate and product distribution in the temperature range 80–110°C has been ascertained. A reaction pathway involving the electrophilic activation of propane on superacid sites and subsequent reaction of the activated propane molecules with OH radicals generated by Fe2+/H2O2 Fenton system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号