首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of geranyl and citronellyl esters of mixed fatty acids has been investigated by alcoholysis of coconut oil (CNO) using Rhizomucor miehei lipase. CNO fatty acid esters of geraniol and citronellol have unique mild flavors that can be used in food materials. Both geraniolysis and citronellolysis of CNO produce flavor esters in good yield. Depending on substrate concentration the molar yield is more than 50%. The optimized reaction conditions were: pressure, atmospheric; temperature, 50°C; incubation period, 5 h; and Lipozyme, 10% (w/w).  相似文献   

2.
Ethyl docosahexaenoate (E-DHA) is efficiently enriched by the selective alcoholysis of ethyl esters originating from tuna oil with lauryl alcohol using immobilized lipase. Alcoholysis of ethyl esters by immobilized Rhizopus delemar lipase raised the E-DHA content in the unreacted ethyl ester fraction from 23 to 49 mol% in 90% yield. However, the content of ethyl eicosapentaenoate (E-EPA) was higher than the initial content. Hence we attempted to screen for a suitable lipase to decrease the E-EPA content, and chose Rhizomucor miehei lipase. Several factors affecting the alcoholysis of ethyl esters were investigated, and the reaction conditions were determined. When alcoholysis was performed at 30°C with shaking in a mixture containing ethyl esters/lauryl alcohol (1:3, mol/mol) and 4 wt% of the immobilized R. miehei lipase, the E-DHA content in the ethyl ester fraction was increased and the E-EPA content was decreased. By alcoholyzing ethyl esters in which the E-DHA content was 45 mol% (E-tuna-45) for 26 h, the E-DHA content was increased to 74 mol% in 71% yield and the E-EPA content was decreased from 12 to 6.2 mol%. To investigate the stability of the immobilized lipase, batch reactions were carried out continually by replacing the reaction mixture with fresh E-tuna-45/lauryl alcohol (1:3, mol/mol) every 24 h. The decrease in the alcoholysis extent was only 17% even after 100 cycles of reaction. It was found that increasing the proportion of lauryl alcohol increased the conversion of E-EPA to lauryl-EPA. When an ethyl ester mixture in which the E-DHA content was 60 mol% (E-tuna-60) was alcoholyzed for 24 h with 7 molar equivalents of lauryl alcohol, the E-DHA content was raised to 93 mol% with 74% yield and the E-EPA content was reduced from 8.6 to 2.9 mol%.  相似文献   

3.
Menhaden oil was interesterified with CLA in a packed-bed reactor containing an immobilized lipase from Mucor miehei (L9) as the biocatalyst. Process optimization was studied using a sequence of 22×3 factorial designs involving the mole ratio of reactants, the reaction temperature, and the space-time of the reactor as experimental parameters. Three different responses—percentage of incorporation of CLA, level of n−3 residues remaining, and conversion of CLA—were considered as objective functions. The parameters studied showed opposite effects for incorporation of CLA and the retention level of n−3 residues. A desirability function was constructed to describe a desirable balance of the conflicting response variables. Optimal conditions correspond to a molar ratio of CLA to fish oil of 0.8 to 1, a temperature of 60°C, and a space-time of 5 h.  相似文献   

4.
The objective of this study was to investigate the use of lipases as catalysts for separating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish oil by kinetic resolution. Transesterification of various fish oil triglycerides with a stoichiometric amount of ethanol by immobilized Rhizomucor miehei lipase under anhydrous solvent-free conditions resulted in a good separation. When free fatty acids from the various fish oils were directly esterified with ethanol under similar conditions, greatly improved results were obtained. By this modification, complications related to regioselectivity of the lipase and nonhomogeneous distribution of EPA and DHA into the various positions of the triglycerides were avoided. As an example, when tuna oil comprising 6% EPA and 23% DHA was transesterified with ethanol, 65% conversion into ethyl esters was obtained after 24 h. The residual glyceride mixture contained 49% DHA and 6% EPA (8:1), with 90% DHA recovery into the glyceride mixture and 60% EPA recovery into the ethyl ester product. When the corresponding tuna oil free fatty acids were directly esterified with ethanol, 68% conversion was obtained after only 8h. The residual free fatty acids comprised 74% DHA and only 3% EPA (25:1). The recovery of both DHA into the residual free fatty acid fraction and EPA into the ethyl ester product remained very high, 83 and 87%, respectively.  相似文献   

5.
FA reaction selectivity of Burkholderia cepacia, Rhizomucor miehei, and Candida antarctica fraction B lipases was compared between acyl-transfer and esterification reactions. Multicompetitive reaction mixtures containing a series of n-chain FA (a C4–C18 series; and a C18∶x series, where X=0-3 double bonds) and a single acetate ester co-substrate [triacetin, 1,2-propanediol (1,2-PD)diacetate, and 1,3-PD diacetate] were studied in tert-butyl methyl ether at an a w of 0.69. For B. cepacia lipase, FA optima for C8, C16, and C18∶2 were observed in all reactions with 1.0- to 5.9-fold differences in FA selectivity. For R. miehei lipase, an optimum for C8 FA was observed in all reactions with 1.2- to 6.7-fold differences in FA selectivity. For C. antarctica lipase, FA optima for C8/C10 were observed in all reactions with 1.0- to 2.8-fold differences in FA selectivity. FA selectivities were broadly modulated upon changing from free polyol to acetate ester co-substrates for B. cepacia and R miehei lipases, whereas FA selectivity modulations were more specific upon this change in reaction configuration for C. antarctica B lipase. For all lipases, reactivity toward unsaturated C18∶x FA was enhanced in acyl-transfer relative to esterification reactions with these polyol co-substrates.  相似文献   

6.
The fatty acid specificity of the lipase fromRhizomucor miehei toward 20:1n-9, 20:5n-3, 22:1n-9 and 22:6n-3 has been determined by comparing the alcoholysis (byn-propanol) of various mixtures of C20 and C22 fatty acids (FFA) or the corresponding ethyl esters (FAEE) inn-heptane. For all the fatty acids examined, the degree of conversion was much higher when using FFA rather than FAEE. When comparing the experiments with either single FAEE or FAEE mixtures, it was found for all four fatty acids that the degree of conversion depended on whether the FAEE was alone or together with other fatty acids in the reaction mixture. The lipase showed a strong specificity toward 20:1n-9, whereas the polyunsaturated fatty acids were much poorer substrates, especially 22:6n-3. The degrees of conversion for the two n-3 fatty acids show a clear preference for 20:5n-3 over 22:6n-3, not only when present alone but also in the different mixtures examined. The results obtained in the present experiments therefore suggest that when using the lipase fromR. miehei for enrichment of fish oils with n-3 fatty acids, it should not only be possible to diminish the content of 20:1 and 22:1 present in the outer positions in the triacylglycerols, but also to incorporate relatively more 20:5n-3 than 22:6n-3 into the triglycerides.  相似文献   

7.
Structured lipids were synthesized by the acidolysis of corn oil by caprylic acid in supercritical carbon dioxide (SCCO2) with Lipozyme RM IM from Rhizomucor miehei. The effects of pressure and temperature on the reaction were studied. To compare the degrees of acyl migration in the SCCO2 and solvent-free reaction systems, the effects of reaction time on the degree of acyl migration were also studied. The highest mole percentage incorporation of caprylic acid (62.2 mol%) occurred at 24.13 MPa in SCCO2. The overall incorporation of caprylic acid in the SCCO2 system remained higher than that in the solvent-free system at every temperature tested. This trend was observed more clearly at lower temperatures (35–55°C) than at higher temperatures (65–75°C). Acyl migration with both reaction systems was low, with a negligible difference between them up to 12 h, after which the degree of acyl migration in the solvent-free system increased rapidly with time up to 24 h compared with the SCCO2 system.  相似文献   

8.
The immobilized 1,3-regiospecific Rhizomucor miehei lipase (Lipozyme™) was employed to catalyze the transesterification reaction (acidolysis) of 1,2-diacyl-sn-glycero-3-phosphatidylcholine with n-3 polyunsaturated fatty acids under nonaqueous solvent-free conditions. With a concentrate of 55% eicosapentaenoic acid (EPA) and 30% docosahexaenoic acid (DHA) and pure phosphatidylcholine from egg yolk, phospholipids of 32% EPA and 16% DHA content were obtained, presumably as a mixture of phosphatidylcholine and lysophosphatidylcholine. 31P nuclear magnetic resonance (NMR) analysis turned out to be a valuable technique to study the details of the reactions involved. It revealed that when 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine was transesterified with 98% pure EPA, a substantial amount of hydrolysis side reaction took place (39%), leading to a product mixture of 39% phosphatidylcholine, 44% lysophosphatidylcholine, and 17% sn-glycerol-3-phosphatidylcholine. The lysophosphatidylcholine constituent comprised 70% EPA, whereas the phosphatidylcholine component contained 58% EPA. The 31P NMR technique provided valid information about the mechanism of the reaction. It became evident that a high dosage of lipase containing 5% water afforded optimal conditions for the optimal extent of EPA incorporation into the phospholipids, under which the extent of hydrolysis side reaction remained relatively high.  相似文献   

9.
Lipase B (GCB) produced by the fungus Geotrichum candidum CMICC 335426 is known for its high specificity towards cis-Δ9 unsaturated fatty acids. The wild-type lipase (not genetically modified) as well as the lipase obtained by heterologous expression of the corresponding gene in Pichia pastoris (genetically modified) were studied in a process aiming to produce an oil containing very little saturated fatty acids (SAFA). The approach described in this paper is based on the selective hydrolysis of sunflower oil (12% SAFA) using the G. candidum type B (GCB) lipases. Depending on the lipase input, up to 60% w/w degree of hydrolysis was obtained within 6–8 h. Because of the high specificity of the GCB lipases (specificity factor ∼30), the level of unsaturates in the free fatty acid fraction was >99% w/w. In contrast with literature data, no loss of specificity was observed, even at the highest degree of hydrolysis obtained. Though both GCB lipases are stable at 30°C, the rate of hydrolysis decreased considerably during the process. Product inhibition as well as time-dependent deactivation (half-life ≈2 h) were shown to be involved. After separation of the oil phase, the unsaturated free fatty acids were recovered from the mixture by evaporation and reconverted to triglycerides by enzymatic esterification with glycerol. Because the GCB lipases have a very low efficiency for esterification, this reaction was carried out with immobilized Rhizomucor miehei lipase. Under continuous removal of the water generated during the process, >95% triglycerides were obtained in less than 24 h. Standard deodorization resulted in an odorless, colorless, and tasteless oil with less than 1% SAFA.  相似文献   

10.
The physical properties of Pseudomonas and Rhizomucor miehei lipase-catalyzed transesterified blends of palm stearin:palm kernel olein (PS:PKO), ranging from 40% palm stearin to 80% palm stearin in 10% increments, were analyzed for their slip melting points (SMP), solid fat content (SFC), melting thermograms, and polymorphic forms. The Pseudomonas lipase caused a greater decrease in SMP (15°C) in the PS:PKO (40:60) blend than the R. miehei lipase (10.5°C). Generally, all transesterified blends had lower SMP than their unreacted blends. Pseudomonas lipase-catalyzed blends at 40:60 and 50:50 ratio also showed complete melting at 37°C and 40°C, respectively, whereas for the R. miehei lipase-catalyzed 40:60 blend, a residual SFC of 3.9% was observed at 40°C. Randomization of fatty acids by Pseudomonas lipase also led to a greater decrease in SFC than the rearrangement of fatty acids by R. miehei lipase. Differential scanning calorimetry results confirmed this observation. Pseudomonas lipase also successfully changed the polymorphic forms of the unreacted blends from a predominantly β form to that of an exclusively β′ form. Both β and β′ forms existed in the R. miehei lipase-catalyzed reaction blends, with β′ being the dominant form.  相似文献   

11.
The objective of this study was to investigate the use of lipases as catalysts for separating EPA and DHA in fish oil by kinetic resolution based on their FA selectivity. Esterification of FFA from various types of fish oils with glycerol by immobilized Rhizomucor miehei lipase under water-deficient, solvent-free conditions resulted in a highly efficient separation of EPA and DHA. Reactions were conducted at 40°C with a 10% dosage of the lipase preparation under vacuum to remove the coproduced water, thus rapidly shifting the reaction toward the products. The bulk of the FA, together with EPA, were converted into acylglycerols, whereas DHA remained in the residual FFA. As an example, when FFA from tuna oil comprising 5% EPA and 25% DHA were esterified with glycerol, 90% conversion into acylglycerols was obtained after 48 h. The residual FFA contained 78% DHA and only 3% EPA, in 79% DHA recovery. EPA recovery in the acylglycerol fraction was 91%. The type of fish oil and extent of conversion were highly important parameters in controlling the degree of concentration.  相似文献   

12.
Structured lipids from menhaden oil were produced by enzymatic acidolysis in a packed bed reactor. Response surface methodology was applied to optimize the reaction. Lipozyme IM from Rhizomucor miehei lipase was the biocatalyst, and caprylic acid was the acyl donor. Parameters such as residence time, substrate molar ratio, and reaction temperature were included for the optimization. High incorporation of acyl donor and retention of high levels of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in the original menhaden oil were obtained. Good quadratic models were obtained for the incorporation of caprylic acid and for the content of EPA plus DHA retained, by multiple regression with backward elimination. The coefficients of determination (R 2) for the two models were 0.91 and 0.87, respectively. The regression probabilities (P) were below 0.003 for both models. Also, the predicted values from the two models had linear relationships with the observed responses. All parameters studied had positive effects on the incorporation of caprylic acid, but only residence time and substrate molar ratio had negative effects on the content of EPA plus DHA retained. The optimal conditions generated from models were temperature =65°C, substrate molar ratio=4–5, and residence time=180–220 min. Incorporated caprylic acid did not replace DHA, but the content of EPA decreased somewhat with an increase in caprylic acid incorporation.  相似文献   

13.
Lipase regioselectivity is the ability to distinguish between primary (i.e., sn-1,3) and secondary (sn-2) ester functionalities in a triacylglycerol molecule, which is of importance in the manufacture of structured lipids. Unlike existing methods of assessment, which utilize hydrolysis reactions, an alternative technique to assess the regioselectivity of lipases in triacylglycerol transesterification reactions has been developed. An acidolysis reaction is performed between triolein and decanoic, lauric, or stearic acids under conditions that minimize acyl migration, and products are analyzed by silver-ion complexation liquid chromatography, enabling detection of specific triacylglycerol positional isomers. From the rate of formation of these isomers the relative selectivity of the lipase for sn-2 and sn-1,3 ester bonds is determined. With lipases known to lack regioselectivity, the rate of reaction at sn-2 was similar to that at sn-1,3 from the start of the reaction. With sn-1,3 selective lipases, the formation of triacylglycerol isomers with decanoic acid in the secondary position was not detected at any point in the reaction. Regioselectivity as a function of reaction progress was monitored. Two lipases from the genus Pseudomonas exhibited activity toward all positions, but the rate at sn-2 was much reduced, and no incorporation of decanoic acid into this position was detectable until a high degree of conversion had been achieved.  相似文献   

14.
The syntheses of geranyl acetate and citronellyl acetate by alcoholysis reaction catalyzed by immobilized lipase from Mucor miehei was studied for the first time in a solvent-free system. Reactions were carried out at a terpene alcohol/acyl donor molar ratio of 1:5 with Lipozyme at 10% of the total weight of the reactants in a solvent-free system. Incubations were carried out at 55 to 60°C for ethyl and butyl acetates as acyl donors, whereas for methyl acetate the incubation temperature was 40 to 45°C. Excess concentration of acyl donor increases the percentage of geranyl acetate and citronellyl acetate, while excess of terpene alcohol concentration decreases the same. Yields from 75 to 77% molar conversion (90 to 98% conversion, w/w) were obtained after 8 to 28 h of reaction time.  相似文献   

15.
Reaction selectivities were determined in multicompetitive reactions mediated by Rhizomucor miehei (RM) lipase at water activity of 0.19 in hexane. Saturated FA (C4–C18 even chain) and oleic acid (C18∶1) were reacted with a single alcohol, glycerol, or α-or β-MAG containing C4, C10, C16, or C18∶1 individually as alcohol cosubstrate. Similar patterns of broad FA selectivity toward C8–C18 FA were generally observed for esterification into specific acylglycerol (AG) pools with the different α/β-CX-MAG cosubstrates. Exceptions were enrichment of C18 in the MAG pool with α-C16-MAG substrate, and a general suppression of C4/C6 FA reactivity and a specific discrimination toward >C8 FA incorporation into the TAG pool, both for reactions with α-C10- and α-C16-MAG. RM lipase selectivity toward MAG was in descending order: β-C18∶1-MAG>α/β-C4-MAG∼β-C10-MAG∼β-C16-MAG>α-C18∶1-MAG >α-C10-MAG∼α-C16-MAG. Selectivity in channeling CX of the original CX-MAG substrates into higher AG species was in descending order: α-C10-MAG∼α-C16-MAG>β-C10-MAGβ-C16-MAG>α-C18∶1-MAG>β-C18∶1-MAG∼ α/β-C4-MAG. Aside from their characteristic FA selectivity, Burkholderia cepacia (PS-30) and RM lipases behaved similarly in terms of MAG selectivity as well as a general conservation of FA selectivity throughout the sequential steps of TAG assembly from FA and glycerol for processes designed to yield specifically structured TAG.  相似文献   

16.
An attempt was made to further increase the content of n-3 polyunsaturated fatty acid (n-3 PUFA) of fish oil by lipase-catalyzed acidolysis (reaction between fish oil and n-3 PUFA-enriched free fatty acid) without solvent. A bioreactor system was constructed composed of a water-jacketed packed-bed column and a substrate reservoir with a circulation pipeline between the packed-bed column and the reservoir. By keeping the temperature of the reservoir at −10°C (for the first 20 h), followed by −20°C (for the subsequent 40 h) during the batch acidolysis, crystals of free fatty acid appeared, which were removed intermittently by a cotton plug packed in the tip of the outlet pipe in the reservoir. The n-3 PUFA content of the triacylglycerol fraction increased a further 10% by the reduced temperature of the reservoir. Bioreactors for Enzymatic Reaction of Fats and Fatty Acid derivatives, Part XV.  相似文献   

17.
Processes that combine enzymic and physical techniques have been studied for concentrating and separating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil.Candida rugosa lipase was used in hydrolysis reactions to concentrate these acids in the glyceride fraction. By controlling the degree of hydrolysis, two products have been obtained, one enriched in total n-3(∼50%), the other enriched in DHA and depleted in EPA (DHA∼40%, EPA∼7%). The glyceride fraction from these reactions was recovered by evaporation and converted back to triglycerides by partial enzymic hydrolysis, followed by enzymic esterification. Both reactions were carried out withRhizomucor miehei lipase. DHA-depleted free fatty acids from aC. rugosa hydrolysis were fractionated to increase the EPA level (∼30%) and re-esterified to triglycerides by reaction with glycerol andR. miehei.  相似文献   

18.
The influence of initial water concentration on the synthesis of n-butyl oleate was investigated. The synthesis was done with immobilizedMucor miehei lipase—Lypozyme—at various reaction conditions. The activity of the enzyme is lower at higher amounts of water. Initial reaction rates, as well as equilibrium conversion, increase at low initial water concentration. Optimal water concentration for the activity of immobilized lipase is temperature dependent at the pressure of 1 bar. Low initial water concentration barely effects equilibrium esterification at 0.032 bar. At high initial water concentrations equilibrium conversion, as well as initial reaction rates, decrease at both pressures.  相似文献   

19.
Straight-chain saturated C4 to C18 alcohols and unsaturated C18 alcohols such as cis-9-octadecenyl (oleyl) cis-6-octadecenyl (petroselinyl), cis-9, cis-12-octadecadienyl (linoleyl), all-cis-9,12,15-octadecatrienyl (α-linolenyl), and all-cis-6,9,12-octadecatrienyl (γ-linolenyl) alcohols, were esterified with caprylic acid using papaya (Carica papaya) latex lipase (CPL) and immobilized lipase from Candida antarctica (Lipase B, Novozym, NOV) and Rhizomucor miehei (Lipozyme, LIP) as biocatalysts. With CPL, highest activity was found for octyl and decyl caprylate syntheses, whereas both NOV and LIP showed a broad chain-length specificity toward the alcohol substrates. CPL strongly discriminated against all C18 alcohols studied, relative to n-hexanol, whereas the microbial lipases accepted the C18 alcohols as substrates nearly as well as n-hexanol. Both petroselinyl and γ-linolenyl alcohol were very well accepted as substrates by NOV as well as LIP, although the corresponding fatty acids, i.e., petroselinic and γ-linolenic acid, are strongly discriminated against by several microbial and plant lipases, including LIP and CPL.  相似文献   

20.
Two immobilized lipases, nonspecific SP435 from Candida antarctica and sn-1,3 specific IM60 from Rhizomucor miehei, were used as biocatalysts for the restructuring of borage oil (Borago officinalis L.) to incorporate capric acid (10:0, medium-chain fatty acid) and eicosapentaenoic acid (20:5n-3) with the free fatty acids as acyl donors. Transesterification (acidolysis) reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The fatty acid profiles of the modified borage oil were different from that of unmodified borage oil. Higher incorporation of 20:5n-3 (10.2%) and 10:0 (26.3%) was obtained with IM60 lipase, compared to 8.8 and 15.5%, respectively, with SP435 lipase. However, SP435 lipase was able to incorporate both 10:0 and 20:5n-3 fatty acids at the sn-2 position, but the IM60 lipase did not. Solvents with log P values between 3.5 and 4.5 supported the acidolysis reaction better than those with log P values between −0.33 and 3.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号