首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
低渗透油藏垂直裂缝井产能评价   总被引:8,自引:6,他引:8  
通过近似和修正方法得出了低渗透垂直裂缝油藏的产能公式。考虑到启动压力梯度、裂缝长度以及地层的污染状况,通过修正方法得到了具有启动压力梯度的垂直裂缝油藏生产井的产能公式,并给出了相应的工程产能公式。分析表明,当启动压力梯度较小时,对产量的影响很小,随着启动压力梯度的增大,影响增强,产量下降。  相似文献   

2.
低渗透油藏压裂井产能分析   总被引:3,自引:2,他引:3  
根据低渗透油藏的非达西渗流规律,建立并求解了常流压条件下垂直裂缝井双线性流数学模型,绘制并分析了产能理论曲线.研究表明:表皮系数对压裂井的初期产量影响较大.表皮系数越大,裂缝井初期产量就越低.随生产时间增长,表皮效应的影响逐渐消失.启动压力梯度主要影响压裂井的中后期产能,启动压力越大,产量下降就越快.因此,在进行低渗透油藏垂直裂缝井产能分析时,必须考虑启动压力梯度的影响.  相似文献   

3.
为准确预测致密低渗透气藏压裂水平井产能,利用保角变换对渗流场变换,建立考虑压敏效应和启动压力梯度的渗流方程,积分得到压力函数降,并利用叠加原理建立压裂水平井产能模型。结果表明:产能模型与试采产能的误差为8.26%,产能模型准确可靠;压敏效应对产能的影响大于启动压力梯度对产能的影响;裂缝多于3条时,产能增加幅度变缓;增加裂缝长度和中间裂缝间距有利于提高产能。该模型为致密低渗透气藏压裂水平井产能预测和压裂参数优化提供了借鉴。  相似文献   

4.
低渗透油藏中水平井的产能公式分析   总被引:7,自引:1,他引:7  
用近似方法得出了各类边界供给油藏中的水平井产量公式。考虑启动压力梯度,根据水平井的椭球流态理论,通过平均质量守恒方法得到了椭球供给边界油藏中水平井的稳态产量近似公式,以及底水油藏中水平井的稳态产量近似公式;通过修正得到了含启动压力梯度的边水油藏中水平井的稳态产量公式。并给出了相应的无量纲产量公式和工程产量公式。分析表明,当启动压力梯度较小时,对产量的影响也很小,随着启动压力梯度的增大,影响增强,产  相似文献   

5.
变形介质低渗透油藏的产能分析   总被引:31,自引:5,他引:31  
在低渗透油藏中,由于多孔介质孔隙和喉道较小,固液作用显著,因此达西定律已不适应,实验表明,低渗透油藏渗流时存在启动压力梯度,另外,有些低渗透油藏还具有介质变形的性质。尤其是异常高压的低渗透油藏,变形介质的渗透率一般随压力变化呈指数关系,考虑启动压力梯度和介质变形的影响,研究低渗透油藏中直井产量的变化规律,计算表明,低渗透油藏中,油井的产量随启动压力梯度和介质变形系数的增大而减小,随生产压差的增大而增大,对于采油指数,则存在一个最佳压差,此时采油指数最大,在油田的生产中,可通过增大生产压差或者 减小注采井距来提高油井的产量。  相似文献   

6.
低渗透气藏压裂井三项式产能方程分析   总被引:1,自引:0,他引:1  
压裂是低渗气藏开发常用的一种方式,气井压后渗流规律发生变化,气井产能将受到裂缝参数的影响,同时低渗气藏普遍具有低孔、低渗的特征,气体在储层中渗流时存在启动压力,而目前关于压裂气井产能研究主要是侧重于考虑裂缝参数的影响,公式较为复杂,不便于处理测试资料,且大多忽略了启动压力梯度。为此,基于气井压后渗流特征,推导了考虑启动压力梯度影响的低渗透气藏压裂气井三项式产能方程,给出了处理测试资料的方法,并分析了压裂裂缝参数、启动压力梯度对产能的影响,为气井压裂工艺设计时参数的合理选取以及气井压后的合理配产提供了依据。  相似文献   

7.
低渗透应力敏感气藏压裂井产能分析   总被引:2,自引:0,他引:2  
张强  王永清  张楠  杨玲智  蒋睿 《特种油气藏》2012,19(3):74-76,154
应用保角变换原理,将平面垂直裂缝气井的渗流问题转化为易于求解的一维带状渗流问题。基于Forchheimer二项式渗流方程,考虑启动压力梯度和渗透率应力敏感性的影响,推导得到低渗透应力敏感气藏中垂直裂缝井的产能公式,并简化得到低压、高压条件下的产量公式。用现场数据对公式进行验证,并绘制分析了理论产能曲线。结果表明:启动压力梯度和应力敏感性会影响压裂井的产能,压裂气井的产量随着启动压力梯度或者应力敏感性的增加而降低;当气井高产时,必须考虑非达西渗流效应。  相似文献   

8.
低渗透油藏非线性渗流规律研究   总被引:4,自引:0,他引:4  
相对于常规油藏,低渗透油藏具有特殊的开发规律,其实质是渗流规律的特殊性.因此对低渗透油藏渗流规律进行研究具有重要的意义.通过室内岩心单相渗流实验,研究了不同渗透率、不同流体粘度、不同流体成分的条件下低渗透岩心的渗流规律.实验结果表明,在低渗透油藏中流体的流动呈现出非线性特征,存在启动压力梯度.启动压力梯度随渗透率增大而减小,随流体粘度升高而增大.启动压力梯度与流体的组成有关.  相似文献   

9.
致密砂岩气藏储层物性差,需要采用水平井配合多级水力压裂技术进行开发,为此,对低渗透气藏多级压裂水平井稳态产能模型进行了研究.首先,由渗流力学基本原理,建立单条裂缝水平井等效井径模型;然后,运用叠加原理,建立了耦合水平井段管流动态的多级压裂水平井稳态产能模型,在Visual Studio 2008 C#编程环境下,对模型进行了求解,获得了多级压裂水平井产量及压力分布.在此基础上,对多级压裂水平井稳态产能的相关影响因素进行了分析,认为缝长是影响低渗透气藏产能的主要因素,而裂缝导流能力对其影响不大.通过矿场实例,计算得到西部某气藏压裂水平井单井产能为11.357× 104 m3/d,与实测产能误差为15.7%,验证了计算结果的准确性.该井在压裂施工中应尽可能提高缝长,以获得更好的增产效果.  相似文献   

10.
变形介质低渗透油藏水平井产能特征   总被引:12,自引:3,他引:12  
针对低渗透油藏水平井生产过程中井底附近渗流场的复杂性问题,对低渗透油藏水平井远井区域和近井区域渗流场的多种基本渗流形态进行了分析,基于稳定渗流理论,给出了考虑启动压力梯度的变形介质在低渗透油藏中3种流态并存的水平井产能计算公式.通过实例计算分析了水平井产能特征和不同水平井井段长度条件下各种流态的主次关系与转换特征.研究结果表明,低渗透油藏水平井的产能随启动压力梯度和介质变形系数的增大而降低;随水平井段长度的增加,远井区域先以径向流为主,逐步转化为平行流;近井区域以径向流为主.  相似文献   

11.
随着我国大批低渗气藏的相继发现,低渗透气田的开发引起了极大的关注.对此类气藏产能的准确评价成为了合理、高效开发的关键.从渗流力学角度来讲,低渗产水气藏的渗流规律不同于常规气藏,气体渗流时,存在一个启动压力梯度,且气井产水后,出现了气、水两相流动,如果仍用常规方法来分析气井产能就会得出错误的结果.为此,针对气藏低渗、产水的特点,推导了低渗产水气井产能预测公式,并通过实例分析了产水及启动压力梯度对气井产能的影响,这对于气、水同产井的管理及生产动态预测都具有重要的意义.  相似文献   

12.
低渗气藏一般具有低孔低渗的地质特点,气体在气藏中渗流时存在启动压力,采用常规的二项式产能方程进行测试资料处理,有时得到的二项式方程系数A或B值是负值,难以有效预测气井产能,因而目前常用考虑启动压力的三项式产能方程解释低渗气藏单井产能。三项式产能方程多了常数项C,系数确定方法不同于二项式方程。稳定可靠的地层压力是常规方法得到准确气井产能方程的前提,但低渗透气井一般关井测试压力恢复时间较长,且可能有一定误差,影响三项式产能方程的使用质量。把(p_e~2-C)看成整体,提出了两种不需要测试地层压力和计算常数项C就可以利用低渗气藏三项式产能方程预测低渗气藏气井无阻流量的方法,并通过实例验证两种方法的可靠性。另外还可以通过该方法计算无阻流量与测试了地层压力的气井解释的无阻流量对比,检验所测地层压力的准确性。  相似文献   

13.
针对永1沙四段砂砾岩油藏地质条件和当前生产动态,以水电相似原理和等值渗流阻力方法为基础,考虑油藏启动压力梯度和平面非均质性,建立了低渗透油藏产能随时间变化的计算方法并与实际产量进行了对比验证。以注采井间渗透率和储层厚度线性变化规律为例,研究了不同平面非均质分布对产能影响。结果表明:针对低渗透非均质性油藏,在注采压差一定的条件下,采取"高注低采"(在渗透率较高的一端注水、渗透率较低的一端采油)和"厚注薄采"(在厚端注水、薄端采油)的布井方式,更有利于油藏产能和采收率的提高。  相似文献   

14.
存在边水、底水及层间水的低渗透气藏开发到一定程度后会出现气水两相流的情况,由于气水两相流气藏的渗流规律不同于普通低渗透气藏,对此类气藏产能的准确评价成为合理、高效开发的关键。从矿场实际生产情况可知,产水气井在生产时水气质量比难以稳定,如果仍将水气质量比当作定值来分析气井产能就会得出错误的结论。因此,考虑不同工作制度下水气质量比不同,考虑储层应力敏感、启动压力梯度、气体滑脱效应以及表皮污染,基于稳定渗流理论推导出产水气井的产能公式。通过实例计算,新公式计算的无阻流量结果与实际产能测试结果相对误差为3.7%,说明新公式是可靠的。且水气质量比随井底压力减小而增加,说明计算产水气井产量时将水气质量比设为定值并不合理。对敏感性因素分析发现,气井产气量随着滑脱因子增大而增大,而随着启动压力梯度以及应力敏感指数的增大而减小,启动压力梯度对气井产量影响很小,基本可以忽略。  相似文献   

15.
低渗致密气藏压裂水平井产能预测新方法   总被引:1,自引:0,他引:1  
水平井分段压裂是低渗致密气藏增产改造的关键手段,压裂水平井的产能预测和影响因素分析对气藏的高效开发具有重要指导意义。基于气体流动中的压降分析,通过对地层段、裂缝段、射孔孔眼段和井筒段的压降进行耦合,综合考虑裂缝应力敏感性、孔眼周围气体汇聚效应和井斜角的影响,建立了压裂水平井产能预测新模型,并分析了速度系数、井斜角、应力敏感系数等因素对产能的影响。实例计算表明新模型预测精度较高,便于工程应用。垂直裂缝产量沿井筒呈中部低、端部高的"倒钟形"分布,且跟端方向裂缝产量略高于趾端方向。随速度系数减小,气井产量先增加后稳定不变,增加幅度随裂缝条数增加而加大;气井产量随井斜角增加而增加,且增加幅度随水平段长度增加而加大;生产后期,裂缝应力敏感会显著降低气井产量,应力敏感系数越大,产量越低。  相似文献   

16.
低渗砂岩气藏的单井产量低、稳产能力差.气田的产能稳产接替方式一般采用新钻井来弥补递减产能,所以研究气田的产能递减规律,可以为产能部署提供一定的参考.为此,建立了一套气田产能递减规律分析的思路:首先分析单井的递减规律,然后结合每年的投产钻井数,计算出气田每年的产能总递减率:即可计算出气田每年递减的产能.利用该研究思路分析了中国典型低渗透砂岩气田——苏里格气田的单井递减规律和产能总递减率.苏里格气田的气井初期递减率较大,中后期逐步减小,递减率的变化幅度越来越小;气田产能总递减率不是逐渐减小或逐渐增大的,而是围绕某一定的区间范围跳跃变化.该递减特征为苏里格气田的产能部署提供了依据.  相似文献   

17.
油气层产能预测方法及模型   总被引:27,自引:5,他引:27  
应用渗流力学基本理论,提出了以油气层有效渗透率为突破口,确立了利用常规测井资料在油气层测试之前对其产能进行预测的方法。根据塔里木盆地多个油气田大量试油和岩心分析资料,分别建立了油层和气层产能预测评价的实用数学模型,从而把渗流力学理论模型变成了易于应用的实用技术。应用所建立的产能预测方法及数学模型,在塔里木盆地第一次成功地对一口油气井的产能进行了定量预测计算。从日产天然气几十万方的特高产层到低产层和干层,塔里木盆地库车地区A井天然气层产能预测结果得到了完井测试结果的证实,表明了产能预测方法和模型的有效性,同时也说明利用测井资料预测评价油气层产能技术的良好应用前景。  相似文献   

18.
低渗透气藏气井产能评价新方法   总被引:10,自引:0,他引:10  
目前我国发现的气藏大都是低渗透气藏,这类气藏的渗流规律不同于常规气藏渗流规律,如果按常规气藏的产能评价方法对产能测试资料进行分析评价,将得出错误的结果。为此,从渗流基本定律出发,根据低渗透气藏气体渗流过程中存在启动压力梯度的特点,推导出了低渗透气藏气井产能方程的新形式,该新的产能方程有别于传统的二项式方程,是一个三项式渗流方程,这就解释了为什么在低渗透气井中用常数的二项式或指数式方程来整理气井产能测试资料将导致错误解释结果的原因。根据新方程的特点,采用最优化方法进行整理,并将该理论用于西部某气田气井产能的评价,取得了很好的结果  相似文献   

19.
一个新的低渗透气藏气井产能预测公式   总被引:8,自引:0,他引:8  
低渗透气藏普遍具有低孔、低渗、高含水饱和度的特点,因而往往具有较高的启动压力梯度。目前,在进行低渗透气井产能预测时,多采用常规气藏的产能预测公式,启动压力梯度被忽略,导致预测结果与生产实际存在较大误差。通过大量文献的调研,确认低渗透气藏中启动压力梯度确实存在,并且已逐渐成为产能预测中一个不容忽视的重要影响因素。为此,文章基于对低渗透气藏渗流机理的分析和研究,利用Forchheimer由实验提出的描述气体渗流的压降二次方程,同时考虑启动压力梯度的影响,推导出了适合低渗透气藏的气井产能预测公式,并对其进行了实例计算分析,认为低渗透气藏产能预测中必须考虑启动压力梯度的影响,得到了进行产能预测时一些必要参数的获取方法。  相似文献   

20.
低渗透底水油藏产能计算及其影响因素   总被引:1,自引:2,他引:1  
针对低渗透底水油藏的地质特征,通过将油层段的流动分为2个流动区域:平面径向流动区和近井地带的变截面流动区,分区域运用达西公式,推导并得到了考虑启动压力梯度和介质变形的低渗透底水油藏的产能公式.分别运用矿场统计法、理论计算法绘制了该类油藏的IPR曲线,并研究了启动压力梯度、介质变形、含水率、地层压力对产量的影响.研究结果表明IPR曲线存在最大产量点;相同条件下启动压力梯度越小、变形系数越小、地层压力越高,产油量越高;相同条件下启动压力梯度越小、变形系数越大、地层压力越高,最大产量点对应的压力越高;含水率对最大产量点的位置几乎没有影响.研究成果对合理开发低渗透底水油藏具有理论指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号