首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two different commercial SCR catalysts belonging to the V2O5–WO3–TiO2 system, and different alternative catalysts based on Mn, Fe, Cr, Al and Ti oxides have been tested in the conversion of VOCs in excess oxygen in a temperature range typical of the SCR process (500–700 K). Propane, propene, isopropanol, acetone, 2-chloropropane and 1,2-dichlorobenzene have been fed with excess oxygen and helium. The industrial catalysts are poorly active in the conversion of propane, giving mainly rise to propene by oxy-dehydrogenation. The conversion of propene is higher with CO as the predominant product. In any case, the oxidation activity depends on the vanadium content of the catalyst. Isopropanol is mainly converted into acetone and propene, while acetone is burnt predominantly to CO. Mn- and Fe- containing systems are definitely more active in the conversion of hydrocarbons and oxygenates, giving rise almost exclusively to CO2. 2-Chloropropane is selectively dehydrochlorinated to propene and HCl starting from 350 K, propene being later burnt to CO on the industrial V2O5–WO3–TiO2 catalysts, whose combustion activity is, apparently, not affected by chlorine. On the contrary, chlorine strongly affects the behavior of Mn-based catalysts, that are active in the dehydrochlorination of 2-chloropropane, but are simultaneously deactivated with respect to their combustion catalytic activity. The conversion of 1,2-dichlorobenzene gives rise to important amounts of heavy products in our experimental conditions with relatively high reactant concentration.  相似文献   

2.
Operating the SCR DeNOx reactor at temperatures below 200 °C results in a considerable saving in operating costs. Plant experience shows that on the catalysts in these second generation DeNOx plants, even for flue gases with SO2 concentration below 10 mg/m3, over 1–2 years operating time sizeable quantities of ammonium sulfates accumulate. Ammonium sulfates deposited on V2O5–WO3/TiO2 catalysts react with NOx to nitrogen and sulfuric acid. Second-order rate constants of this reaction for temperatures of 170 °C have been derived. It could be shown that the sulfuric acid formed on the catalyst is displaced by water vapour and desorbs resulting in gas phase concentrations of up to 6.5 mg acid/m3 flue gas. Plant equipment downstream of the ammonium sulfate containing low temperature DeNOx catalysts has to be protected against the corrosive action of the sulfuric acid in the flue gases leaving the DeNOx reactor.  相似文献   

3.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

4.
The role of vanadium oxide and palladium on the benzene oxidation reaction over Pd/V2O5/Al2O3 catalysts was investigated. The Pd/V2O5/Al2O3 catalysts were more active than V2O5/Al2O3 and Pd/Al2O3 catalysts. The increase of vanadium oxide content decreased the Pd dispersion and increased the benzene conversion. A strong Pd particle size effect on benzene oxidation reaction was observed. Although the catalysts containing high amount of V4+ species were more active, the Pd particle size effect was responsible for the higher activity.  相似文献   

5.
The effect of sulphate on the catalytic properties of V2O5/TiO2 and WO3/TiO2 in the selective reduction of NO with NH3 has been investigated. For both catalytic systems, the presence of sulphate results in the enhancement of catalytic activity without reduction of selectivity to nitrogen. The rate of NO reduction depends on the sulphate content, which is affected by the original composition of titania, the method of catalyst preparation and the metal oxide loading.  相似文献   

6.
The subsolidus region of the BaO–La2O3–V2O5 phase diagram has been redetermined. Previously reported binary phases of LaVO4, La8V2O17, La3VO7, BaLa2O4, Ba3V2O8, Ba2V2O7, Ba3V4O13 and BaV2O6 have all been confirmed. The ternary phases Ba2LaV3O11, Ba3LaV3O12 and Ba3La40V12O93 have also been confirmed. The new phase “BaLa10V4O26” has been synthesised for the first time and is reported here along with the amended phase diagram. The previously omitted phase of La1.42V0.58O3.58 has also been included and reasons for this are cited. The diagram is shown for two temperatures (1000 and 600 °C) due to the low melting point of V2O5-rich compounds.  相似文献   

7.
The WO3–TiO2 catalysts with different WO3 loadings prepared by the coprecipitation method were investigated in comparison with those prepared by the conventional impregnation method for the activity and durability in the high temperature SCR of NO by NH3 and the structural and physico-chemical properties which were characterized by BET and XRD measurements, IR, Raman and XPS spectroscopies. The catalyst prepared by coprecipitation, as compared with that prepared by impregnation, was found to exhibit a higher SCR activity at high temperatures and also to possess a larger surface area, higher Brønsted acidity and larger monolayer capacity of the support with WO3. Increasing the WO3 loading of the catalysts enhances the SCR activity and simultaneously increases the Brønsted acidity. The observed improvement of SCR activity for the catalyst prepared by coprecipitation is mainly attributed to the higher Brønsted acidity and the presence of the more highly dispersed WO3 species which is suggested by the larger monolayer capacity of ca. 13 μmol(W)/m2 and no crystalline WO3 on TiO2 detected with XRD at the high WO3 loading up to 40 wt.%. The catalyst with 20 wt.% WO3, as compared with that prepared by impregnation, was found to exhibit a better thermal durability at high temperatures from 550 to 600 °C. The better durability is attributed to that the reduction of the surface area and the formation and subsequent growth of crystalline WO3 upon aging are more remarkably inhibited.  相似文献   

8.
VOx–TiO2 catalysts with vanadium loading less than that of a monolayer have been prepared either by impregnation in aqueous media from solutions of V(V) or V(IV) at different concentrations and pH, or by grafting in anhydrous media on anatase supports with surface areas of 10, 150 and 350 m2 g−1. Their characterisation by XPS, DRIFT and Raman spectroscopy, compared to that of EUROCAT EL10V1 and V8 reference catalysts, shows that the dispersion of the load depends on the mode of preparation and is not necessarily equal to 1.  相似文献   

9.
采用比表面积分别为101.86 m2·g-1(A)、86.37 m2·g-1(B)和7.78(C)m2·g-1(C)的TiO_2载体,通过分步浸渍法制备V2O5-Mo O3/TiO_2(A,B,C)选择性催化还原脱硝催化剂。在空速为10 000 h-1和氨氮体积比1.0条件下,以TiO_2(A)与TiO_2(B)为载体制备的催化剂脱硝活性在反应温度窗口(350~450)℃超过90%,且具有良好的高温抗硫中毒性能和相对较小的氨气氧化率。而以TiO_2(C)为载体制备的脱硝催化剂活性温度窗口窄,在350℃时获得的最高脱硝活性仅为73%,且对NH3的氧化作用较强。利用X射线衍射、低温N2吸附-脱附、紫外-可见漫反射光谱、H2程序升温还原和NH3程序升温脱附等对载体和催化剂进行表征。结果表明,活性组分V2O5在载体TiO_2(A)上分散性良好,主要以孤立态钒氧物种形式存在,因此,以TiO_2(A)为载体制备的催化剂比表面积、氧化还原性和表面酸性等性能更优。  相似文献   

10.
The catalytic performance of mono- and bimetallic Pd (0.6, 1.0 wt.%)–Pt (0.3 wt.%) catalysts supported on ZrO2 (70, 85 wt.%)–Al2O3 (15, 0 wt.%)–WOx (15 wt.%) prepared by sol–gel was studied in the hydroisomerization of n-hexane. The catalysts were characterized by N2 physisorption, XRD, TPR, XPS, Raman, NMR, and FT-IR of adsorbed pyridine. The preparation of ZrW and ZrAlW mixed oxides by sol–gel favored the high dispersion of WOx and the stabilization of zirconia in the tetragonal phase. The Al incorporation avoided the formation of monoclinic-WO3 bulk phase. The catalysts increased their SBET for about 15% promoted by Al2O3 addition. Various oxidation states of WOx species coexist on the surface of the catalysts after calcination. The structure of the highly dispersed surface WOx species is constituted mainly of isolated monotungstate and two-dimensional mono-oxotungstate species in tetrahedral coordination. The activity of Pd/ZrW catalysts in the hydroisomerization of n-hexane is promoted both with the addition of Al to the ZrW mixed oxide and the addition of Pt to Pd/ZrAlW catalysts. The improvement in the activity of Pd/ZrAlW catalysts is ascribed to a moderated acid strength and acidity, which can be correlated to the coexistence of W6+ and reduced-state WOx species (either W4+ or W0). The addition of Pt to the Pd/ZrAlW catalyst does not modify significantly its acidic character. Selectivity results showed that the catalyst produced 2MP, 3MP and the high octane 2,3-dimethylbutane (2,3-DMB) and 2,2-dimethylbutane (2,2-DMB) isomers.  相似文献   

11.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

12.
Alumina–silica mixed oxide, synthesized by the sol–gel technique, was used as a support for dispersing and stabilizing the active vanadia phase. The catalysts were characterized employing 51V and 1H solid-state MAS NMR, diffuse reflectance FT-IR, BET surface area measurements. The partial oxidation activities of the catalysts were tested using methanol oxidation as a model reaction. 51V solid-state NMR studies on the calcined catalysts showed the peaks corresponding to the presence of both tetrahedral and distorted octahedral vanadia species at low vanadia loadings and with an increase in V2O5 content, the 51V chemical shifts corresponding to amorphous V2O5 like phases were observed. DRIFTS studies of the catalysts indicated the vibrations corresponding tetrahedral vanadia species at low and medium loadings and at high V2O5 contents the vibrations corresponding V=O bonds of V2O5 agglomerates were observed. The V/Al–Si catalysts exhibited high selectivity for the dehydration product dimethyl ether in the methanol partial oxidation studies showing the predominance of the acidic nature of the alumina–silica support over the redox properties of the active vanadia phase.  相似文献   

13.
The catalytic reduction of NOx in the typical operation temperatures and oxygen concentrations of diesel engines has been studied in the presence of V3W9Ti in a tubular flow reactor. The results have shown that the selective catalytic reduction is strongly affected by the oxygen concentration in low temperature range (150–275 °C). At higher temperatures, the reaction becomes independent of the O2 concentration. The rate of the selective catalytic reduction of NO with ammonia may be considerably enhanced by converting part of the NO into NO2. DRIFT measurements have shown that NH3 and NO2 are adsorbed on the catalyst surface on the contrary of NO. The experiments have shown that the decrease in N2 selectivity of the SCR reaction is mainly due to the SCO of ammonia and to the formation of nitrous oxide.  相似文献   

14.
Ceramics in the system BaO-Li2O–Nd2O3–TiO2 (BNT–LNT) were prepared by the mixed oxide route. Powders were mixed, milled, calcined and sintered at 1475°C for 4 h. Fired densities decreased steadily along the series from BNT to LNT. The microstructures of samples rich in BNT were dominated by small needle-like grains; the LNT samples comprised larger (6 μm) cubic grains. X-ray diffraction showed that there was a transition from orthorhombic BNT to cubic LNT; small amounts of LNT could be accommodated in BNT, but between 10–20% LNT there was the development of the second phase. Small additions of LNT led to a small increase in relative permittivity, but decreased the dielectric Q-value (from the maximum of 1819 at 4 GHz). As BNT and LNT exhibit negative and positive temperature dependencies of permittivity respectively, the addition of 10–20% LNT to BNT should yield samples with zero temperature dependence of r Impedance spectroscopy showed that data could only be acquired at elevated temperatures for BNT rich samples (above 500°C), but at modest temperatures (less than 100°C) for the more conductive LNT.  相似文献   

15.
Two commercial SCR catalysts, with a nominal W content of about 9 wt.% and a V nominal content of 0.55 and 1.8 wt.%, respectively, were contacted with different amounts of Na and K and with HCl vapours in order to simulate poisoning by species more specifically contained in exhaust gases from MSW combustion. Catalysts were characterised using XRD analysis, SEM/EDX analysis, BET and pore size distribution measurements, NH3 TPD, TG analysis. Poisoning agents do not cause loss of surface area nor pore occlusion. A significant loss of surface acidity was observed upon alkali metals poisoning whereas a decreasing of vanadium content was observed for the more concentrated catalysts upon HCl poisoning. Catalysts deactivation is proportional to the number of acid sites neutralised by alkali metals adsorbing ammonia in the temperature range typical of SCR process. HCl promotes the formation of new acid sites showing a lower activity compared to the original one.  相似文献   

16.
The mechanism of the partial oxidation of methane to formaldehyde with O2 has been investigated on bulk and differently loaded silica supported (4–7 wt%) MoO3 and (5–50 wt%) V2O5 catalysts at 600–650°C in a pulse reactor connected to a quadrupole mass spectrometer. The reaction rate and product distribution in the presence and in the absence of gas-phase O2 have been evaluated. On bare SiO2, low and medium loaded silica supported MoO3 and V2O5 catalysts the reaction proceeds via a concerted mechanism involving the activation of gas-phase oxygen on the reduced sites of the catalyst surface as proved by the direct correlation between catalytic activity and density of reduced sites evaluated in steady-state conditions, while on highly loaded catalysts as well as on bulk MoO3 and V2O5 the reaction rate drops dramatically and the reaction pathway via redox mechanism becomes predominant. The results indicate that the surface mechanism is essentially more effective than the redox mechanism enabling also a higher selectivity to HCHO.  相似文献   

17.
Catalytic activities of Al2O3–TiO2 supporting CoMo and NiMo sulfides (CoMoS and NiMoS) catalysts were examined in the transalkylation of isopropylbenzene and hydrogenation of naphthalene as well as the hydrodesulfurization (HDS) of model sulfur compounds, conventional gas oil (GO), and light cycle oil (LCO). Al2O3–TiO2 supporting catalysts exhibited higher activities for these reactions except for the HDS of the gas oil than a reference Al2O3 supporting catalyst, indicating the correlation of these activities. Generally, more content of TiO2 promoted the activities. Inferior activity of the catalyst for HDS of the gas oil is ascribed to its inferior activity for HDS of dibenzothiophene (DBT) in gas oil as well as in model solvent decane, while the refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) in gas oil as well as in decane was more desulfurized on the catalyst. Characteristic features of Al2O3–TiO2 catalyst are discussed based on the paper results.  相似文献   

18.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

19.
Three different supports were prepared with distinct magnesia–alumina ratio x = MgO/(MgO + Al2O3) = 0.01, 0.1 and 0.5. Synthesized supports were impregnated with Co and Mo salts by the incipient wetness method along with 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CyDTA) as chelating agent. Catalysts were characterized by BET surface area, Raman spectroscopy, SEM-EDX and HRTEM (STEM) spectroscopy techniques. The catalysts were evaluated for the thiophene hydrodesulfurization reaction and its activity results are discussed in terms of using chelating agent during the preparation of catalyst. A comparison of the activity between uncalcined and calcined catalysts was made and a higher activity was obtained with calcined MgO–Al2O3 supported catalysts. Two different MgO containing calcined catalysts were tested at micro-plant with industrial feedstocks of heavy Maya crude oil. The effect of support composition was observed for hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodeasphaltenization (HDAs) and hydrodenitrogenation (HDN) reactions, which were reported at temperature of 380 °C, pressure of 7 MPa and space-velocity of 1.0 h−1 during 204 h of time-on-stream (TOS).  相似文献   

20.
Co–Nb2O5–SiO2 catalysts were prepared using three different sol–gel procedures: (i) the colloidal sol–gel method using NbCl5 and SiCl4 as precursors; (ii) the polymeric sol–gel method using niobium ethoxide and tetraethyl-orthosilicate (TEOS); (iii) an intermediate procedure between the colloidal and polymeric sol–gel method in which the precursors were those utilized in the CSG but dissolved in a mixture of anhydrous ethanol and CCl4. In all procedures, the elimination of the solvent carried out between 80 and 110°C was followed by a reduction in hydrogen flow (30 ml min−1) at 773 K. Following these procedures, samples containing 10 wt.% Co and 15 wt.% niobium oxide (expressed as Nb2O5) were obtained. The characterization of the catalysts was performed using various techniques: N2 adsorption and desorption curves at 77 K, NH3- and H2-chemisorption, TPO, XPS, XRD, and solid state 1H MAS-NMR. Hydrogenolysis of butane was evaluated. The low reaction rates are assigned to the effect of the metal size, whereas the isobutane selectivity as well as the relatively high stability is due to the acidity of the support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号