首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two related methods for effecting electron-transfer dissociation (ETD) are described that involve either the storage of analyte cations in a linear ion trap while reagent anions are transmitted through the cations or storage of the reagent anions with transmission of the analyte cations. In the former approach, the ETD products are captured and stored in the linear ion trap for subsequent mass analysis. In the latter approach, the ETD products pass through the linear ion trap and must be collected or directly mass-analyzed by an external device. In the present study, another linear ion trap is placed in series with the ion trap where the ion/ion reaction was employed. A pulsed dual ion source approach coupled with a hybrid triple quadrupole/linear ion trap instrument was used to illustrate these methods. The two approaches give similar results in terms of the identities and relative abundances of the ETD products. Under optimum conditions, the two approaches also give comparable extents of ion/ion reactions for the same reaction time. Also, conversions of precursor ions to product ions over the same reaction time are similar to those noted for experiments in which ions of both polarities are stored simultaneously. These approaches, therefore, provide expanded experimental options for the use of ETD. An advantage of transmission mode experiments that they hold over mutual storage mode experiments is that they do not require that any specialized measures be taken to enable the simultaneous storage of oppositely charged ions.  相似文献   

2.
Design and performance of a novel hybrid mass spectrometer is described. It couples a linear ion trap mass spectrometer to an orbitrap mass analyzer via an rf-only trapping quadrupole with a curved axis. The latter injects pulsed ion beams into a rapidly changing electric field in the orbitrap wherein they are trapped at high kinetic energies around an inner electrode. Image current detection is subsequently performed after a stable electrostatic field is achieved. Fourier transformation of the acquired transient allows wide mass range detection with high resolving power, mass accuracy, and dynamic range. The entire instrument operates in LC/MS mode (1 spectrum/s) with nominal mass resolving power of 60,000 and uses automatic gain control to provide high-accuracy mass measurements, within 2 ppm using internal standards and within 5 ppm with external calibration. The maximum resolving power exceeds 100,000 (fwhm). Rapid, automated data-dependent capabilities enable real-time acquisition of up to three high-mass accuracy MS/MS spectra per second.  相似文献   

3.
Dobson GS  Enke CG 《Analytical chemistry》2007,79(10):3779-3785
A novel miniature linear ion trap with a total length of 19 mm and a quadrupole rod length of 15 mm has been fabricated to enable ion focusing in the axial plane (between the end caps). Each end cap includes an inwardly projecting tubular section, which prevents dc fringe fields from penetrating to the center of the miniature linear ion trap and aids in ion extraction. Axial focusing of ion packets to dimensions of less than 1 mm through collisional cooling is predicted and demonstrated in the miniature linear ion trap. Due to this demonstrated collisional cooling, narrow kinetic energy distributions are also illustrated on batch ion extraction as might be useful for ion transfer to enable subsequent mass analysis.  相似文献   

4.
Electrospray ionization combined with ion/ion reactions in a quadrupole ion trap can be used for the direct analysis of oligonucleotide mixtures. Elements to the success of this approach include factors related to ionization, ion/ion reactions, and mass analysis. This paper deals with issues regarding the ion polarity combination, viz., positive oligonucleotides/negative charge-transfer agent versus negative oligonucleotides/positive charge-transfer agent. Anions derived from perfluorocarbons appear to be directly applicable to mixtures of positive ions derived from electrospray of oligonucleotides, in direct analogy with positive protein ions. Conditions for forming positive oligonucleotide ions devoid of adducts were more difficult to establish than for forming relatively clean negative oligonucleotide ions. A new approach for manipulating negative ion charge states in the ion trap is described and is based on use of the electric field of the positive charge-transfer agent for storage of high-mass negative ions formed during the ion/ion reaction period. Oxygen cations are shown to be acceptable for charge-state manipulation of mixed-base oligomers but induce fragmentation in polyadenylate homopolymers. Protonated isobutylene (C4H9+), on the other hand, is shown to induce significantly less fragmentation of polyadenylate homopolymers.  相似文献   

5.
Cationic peptide electron-transfer products that do not fragment spontaneously are exposed to ion trap collisional activation immediately upon formation while they pass through a high-pressure collision cell (Q2), where the electron-transfer reagent anions are stored. Radial ion acceleration, which is normal to the ion flow, is implemented by applying an auxiliary dipolar alternating current to a pair of opposing rods of the Q2 quadrupole array at a frequency in resonance with the surviving electron-transfer products. Collisional cooling of cations in the pressurized Q2 ensures efficient overlap of the positive and negative ions for ion/ion reactions and also gives rise to relatively long residence times (milliseconds) for ions in Q2, making it possible to fragment ions via radial excitation during their axial transmission. The radial activation for transmission mode electron-transfer ion/ion reactions has been demonstrated with a doubly protonated tryptic peptide, a triply protonated phosphopeptide, and [M + 7H]7+ ions of ubiquitin. In all cases, significant increases in fragment ion yields and structural information from electron-transfer dissociation (ETD) were observed, suggesting the utility of this method for improving transmission mode ETD performance for relatively low charge states of peptides and proteins.  相似文献   

6.
Proteomics has grown significantly with the aid of new technologies that consistently are becoming more streamlined. While processing of proteins from a whole cell lysate is typically done in a bottom-up fashion utilizing MS/MS of peptides from enzymatically digested proteins, top-down proteomics is becoming a viable alternative that until recently has been limited largely to offline analysis by tandem mass spectrometry. Here we describe a method for high-resolution tandem mass spectrometery of intact proteins on a chromatographic time scale. In a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run, we have identified 22 yeast proteins with molecular weights from 14 to 35 kDa. Using anion exchange chromatography to fractionate a whole cell lysate before online LC-MS/MS, we have detected 231 metabolically labeled (14N/15N) protein pairs from Saccharomyces cerevisiae. Thirty-nine additional proteins were identified and characterized from LC-MS/MS of selected anion exchange fractions. Automated localization of multiple acetylations on Histone H4 was also accomplished on an LC time scale from a complex protein mixture. To our knowledge, this is the first demonstration of top-down proteomics (i.e., many identifications) on linear ion trap Fourier transform (LTQ FT) systems using high-resolution MS/MS data obtained on a chromatographic time scale.  相似文献   

7.
A method was developed to determine nine N-nitrosamines in wastewater on the basis of solid-phase extraction and liquid chromatography mass spectrometry using a linear ion trap-orbitrap hybrid instrument at high mass resolution. Analytes and five deuterated internal standards were preconcentrated by solid-phase extraction. Positive electrospray ionization resulted in protonated molecular ions of all nitrosamines. One to three product ions were formed by collision-induced dissociation or higher energy C-trap dissociation. The signal intensity of the product ions differed up to a factor of 3 between the two techniques. The molecular ions were usually used for quantification, because of the better sensitivity, and the product ions for confirmation. An actual mass resolving power of 25 000-40 000 ensured a sufficient selectivity to distinguish all molecular and product ions from interfering background ions. Only for N-nitrosomorpholine was a coeluting isobaric molecular ion detected in wastewater samples, which, however, formed different product ions. The mass accuracy was between -12 ppm at m/z 55 and 0 ppm at m/z 205 and did not change for more than 5 ppm over a sample sequence of 20 h analysis time. The optimized method allowed quantifying nine N-nitrosamines in drinking water and wastewater samples down to method detection limits of 0.3-3.9 ng/L at instrumental detection limits of 2-14 pg on column. Recoveries over the whole method were between 75 and 125% for six compounds, but considerably lower for three compounds, probably due to strong matrix effects causing a signal suppression of up to 95% in wastewater samples. N-Nitrosodimethylamine and N-nitrosomorpholine were the most abundant compounds (3-22 ng/L) in samples from two wastewater treatment plants, another four nitrosamines (N-nitrosopyrrolidone, -piperidine, -diethylamine, and -dibutylamine) were also detected. Our study demonstrates that the LTQ Orbitrap is a powerful instrument to quantify low molecular weight compounds at the picogram level in complex matrixes with both a high sensitivity and selectivity.  相似文献   

8.
The alternate operation of nanoelectrospray ionization and atmospheric pressure chemical ionization, using a common atmosphere/vacuum interface and ion path, has been implemented to facilitate ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The ion sources are operated in opposite polarity modes whereby one of the ion sources is used to form analyte ions while the other is used to form reagent ions of opposite polarity. This combination of ion sources is well-suited to implementation of experiments involving multiply charged ions in reaction with singly charged ions of opposite polarity. Three analytically useful ion/ion reaction types are illustrated: the partial deprotonation of a multiply protonated protein, the partial protonation of a multiply deprotonated oligonucleotide, and electron transfer to a multiply protonated peptide. The approach described herein is attractive in that it enables both single proton-transfer and single electron-transfer ion/ion reaction experiments to be implemented without requiring major modifications to the tandem mass spectrometer hardware. Furthermore, a wide range of reactant ions can be formed with these ionization methods and the pulsed nature of operation appears to lead to no significant compromise in the performance of either ion source.  相似文献   

9.
Ion-ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2*-. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2*- give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2*- shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide.  相似文献   

10.
An instrument for the study of gas-phase ion/ion reactions in which three independent sources of ions, namely, two electrospray ionization sources and one atmospheric sampling glow discharge ionization source, are interfaced to a quadrupole ion trap mass analyzer is described. This instrument expands the scope of gas-phase ion/ion reaction studies by allowing for manipulation of the charge states of multiply charged reactant and product ions. Examples are provided involving the formation of protein-protein complexes in the gas phase. Complexes with charge states that cannot be formed from reactant ion charge states present in the normal electrospray charge state distributions can be formed in the new apparatus. Strategies that rely on both reactant ion charge state manipulation and product ion charge state manipulation are demonstrated. In addition, simplification of product ion spectra generated from dissociation of complexes formed via ion/ion reactions can be effected by using the discharge source to reduce the charge state of the product ions to primarily 1+.  相似文献   

11.
We developed a fast electron capture dissociation (ECD) device using a linear radio frequency-quadrupole (RFQ) ion trap. The device dissociated peptides and proteins using a focused electron beam with an intensity of 0.5 microA and a diameter of 1 mm. The electron capture rate was 13%/ms for doubly charged peptides, and the total amount of ECD products was identical to the theoretical limit, i.e., 50% of incident precursor ions were observed as maximum ECD products by electron irradiation of 7 ms in a pulse counting detection scheme. Coupling this ECD device to a time-of-flight mass spectrometer, we applied multiple ECD. Protonated ubiquitin precursor ions with a charge state of 10 were repeatedly cleaved by ECD, i.e., charge-reduced species and their highly charged fragments were cleaved again and again, creating lower charged products, leaving only singly to triply charged states among the final products. Meanwhile with the amount of electron irradiated, lower charged products increased. Applying an electron beam for 8 ms, we obtained 96% of the total sequence coverage using a 40 fmol sample except at three proline sites. This fast ECD device should be widely applicable to proteomics including post-translational modification analysis and top-down analysis.  相似文献   

12.
Lu IC  Lin JL  Lai SH  Chen CH 《Analytical chemistry》2011,83(21):8273-8277
This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.  相似文献   

13.
A tandem quadrupole ion trap/ion mobility spectrometer (QIT/IMS) has been constructed for structural analysis based on the gas-phase mobilities of mass-selected ions. The instrument combines the ion accumulation, manipulation, and mass-selection capabilities of a modified ion trap mass spectrometer with gas-phase electrophoretic separation in a custom-built ion mobility drift cell. The quadrupole ion trap may be operated as a conventional mass spectrometer, with ion detection using an off-axis dynode/multiplier arrangement, or as an ion source for the IMS drift cell. In the latter case, pulses of ions are ejected from the trap and transferred to the drift cell where mobility in the presence of helium buffer gas is determined by the collision cross section of the ion. Ions traversing the drift cell are detected by an in-line electron multiplier and the data processed with a multichannel scaler. Preliminary data are presented on instrumental performance characteristics and the application of QIT/ IMS to structural and conformational studies of aromatic ions and protonated amine/crown ether noncovalent complexes generated via ion/molecule reactions in the ion trap.  相似文献   

14.
A mass spectrometric method has been developed for the identification of the carboxylic acid functional group in analytes evaporated and ionized by electrospray ionization (ESI). This method is based on gas-phase ion-molecule reactions of ammoniated ([M + NH4]+) and sodiated ([M + Na]+) analyte molecules with trimethyl borate (TMB) in a modified linear quadrupole ion trap mass spectrometer. The diagnostic reaction involves addition of the deprotonated analyte to TMB followed by the elimination of methanol. A variety of analytes with different func-tionalities were examined, and this reaction was only observed for molecules containing the carboxylic acid functionality. The selectivity of the reaction is attributed to the acidic hydrogen present in the carboxylic acid group, which provides the proton necessary for the elimination of methanol. The diagnostic products are easily identified based on the m/z value of the product ion, which is 72 Th (thomson) greater than the m/z value of the charged analyte, and also by the character-istic isotope pattern of boron. The applicability of this method for pharmaceutical analysis was demonstrated for three nonsteroidal anti-inflammatory drugs: ibuprofen, naproxen, and ketoprofen.  相似文献   

15.
Performance of a linear ion trap-Orbitrap hybrid for peptide analysis   总被引:1,自引:0,他引:1  
Proteomic analysis of digested complex protein mixtures has become a useful strategy to identify proteins involved in biological processes. We have evaluated the use of a new mass spectrometer that combines a linear ion trap and an Orbitrap to create a hybrid tandem mass spectrometer. A digested submandibular/sublingual saliva sample was used for the analysis. We find the instrument is capable of mass resolution in excess of 40,000 and mass measurement accuracies of less than 2 ppm for the analysis of complex peptide mixtures. Such high mass accuracy allowed the elimination of virtually any false positive peptide identifications, suggesting that peptides that do not match the specificity of the protease used in the digestion of the sample should not automatically be considered as false positives. Tandem mass spectra from the linear ion trap and from the Orbitrap have very similar ion abundance ratios. We conclude this instrument will be well suited for shotgun proteomic types of analyses.  相似文献   

16.
The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of 136Xe to 136Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus (136Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.  相似文献   

17.
Wen B  Ma L  Nelson SD  Zhu M 《Analytical chemistry》2008,80(5):1788-1799
A highly sensitive and efficient method has been developed for detection and characterization of glutathione (gamma-glutamyl-cysteinylglycine, GSH)-trapped reactive metabolites using a negative precursor ion (PI) as the survey scan to trigger the acquisition of positive enhanced product ion (EPI) spectra on a triple quadrupole linear ion trap mass spectrometer. The negative precursor ion scan step was carried out monitoring the anion at m/z 272, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine originating from the glutathionyl moiety. Because of the uniqueness and abundance of the anion at m/z 272, this single survey scan exhibited broad utility in the detection of unknown GSH conjugates. Further structural characterization was achieved by analyzing positive MS2 spectra that featured rich fragments without mass cutoff and were acquired in the same liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The effectiveness and reliability of this approach was evaluated using a number of model compounds in human liver microsomal incubations, including acetaminophen, clozapine, diclofenac, imipramine, meclofenamic acid, and ticlopidine. As a result, the PI-EPI approach revealed the presence of known adducts and, in many instances, identified additional conjugates that had not been reported previously. In comparison to the widely used neutral loss (NL) scanning analysis, this approach provided superior sensitivity and selectivity for different types of GSH conjugates. More importantly, the PI-EPI approach is suitable for high-throughput screening of reactive metabolites in the drug discovery process.  相似文献   

18.
A multiplexing method for performing MS/MS on multiple peptide ions simultaneously in a quadrupole ion trap mass spectrometer (QITMS) has been developed. This method takes advantage of the inherent mass bias associated with ion accumulation in the QITMS to encode the intensity of precursor ions in a way that allows the corresponding product ions to be identified. The intensity encoding scheme utilizes the Gaussian distributions that characterize the relationship between ion intensities and rf trapping voltages during ion accumulation. This straightforward approach uses only two arbitrary waveforms, one for isolation and one for dissociation, to gather product ion spectra from N precursor ions in as little as two product ion spectra. In the example used to illustrate this method, 66% of the product ions from five different precursor peptide ions were correctly correlated using the multiplexing approach. Of the remaining 34% of the product ions, only 6% were misidentified, while 28% of the product ions failed to be identified because either they had too low intensity or they had the same m/z ratio as one of the precursor ions or the same m/z ratio as a product ion from a different precursor ion. This method has the potential to increase sample throughput, reduce total analysis times, and increase signal-to-noise ratios as compared to conventional MS/MS methods.  相似文献   

19.
The use of an intermediate-pressure matrix-assisted laser desorption/ionization (IP-MALDI) source working at 0.17 Torr on a linear ion trap (LIT) was investigated for the analysis of tissue specimens, in particular, spinal cord sections. MALDI, with 2,5-dihydroxybenzoic acid (DHB) as the matrix, was employed for the detection of phospholipids. The matrix was applied to the tissue using electrospray to avoid analyte migration. The results indicate that analyzing tissue specimens at nontraditional MALDI vacuum pressures is possible. Coupling MALDI to an LIT permits the use of MSn, which is critical for the ability to identify compounds desorbed directly from tissue specimens. Using MSn, ions detected from m/z 600-1000 were characterized as phosphatidlycholines, PC. Specifically, using tandem MS, PC ions could be classified as either [M + H]+ or [M + Na]+ because the fragmentation patterns of protonated and sodiated phosphatidlycholines follow different pathways.  相似文献   

20.
A dual electrospray ionization source (ESI) has been modified to simultaneously produce cations and anions, one from each emitter, for performing rapid electron-transfer dissociation (ETD) ion/ion reactions on a hybrid linear ion trap-orbitrap mass spectrometer. Unlike the pulsed dual ESI sources that were used to generate ETD reagent ions, this source separates the emitters in space, rather than time, by physically switching which one is in front of the atmospheric inlet. The new arrangement allows for substantially enhanced spray stability and decreased switching times (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号