首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For Part I see ibid., vol.46, no.3, pp.478-84 (Mar. 1999). This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5×10-4 cm2 4H-SiC p+-n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 μs 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, ICBT's, etc.) remains to be investigated  相似文献   

2.
The current-voltage (I-V) characteristics of ultrashallow p+ -n and n+-p diodes, obtained using very-low-energy (<500-eV) implantation of B and As, are presented. the p+-n junctions were formed by implanting B+ ions into n-type Si (100) at 200 eV and at a dose of 6×1014 cm-2, and n+-p junctions were obtained by implanting As+ ions into p-type (100) Si at 500 eV and at a dose 4×1012 cm-2. A rapid thermal annealing (RTA) of 800°C/10 s was performed before I-V measurements. Using secondary ion mass spectrometry (SIMS) on samples in-situ capped with a 20-nm 28Si isotopic layer grown by a low-energy (40 eV) ion-beam deposition (IBD) technique, the depth profiles of these junctions were estimated to be 40 and 20 nm for p+-n and n+-p junctions, respectively. These are the shallowest junctions reported in the literature. The results show that these diodes exhibit excellent I-V characteristics, with ideality factor of 1.1 and a reverse bias leakage current at -6 V of 8×10-12 and 2×10-11 A for p+-n and n+-p diodes, respectively, using a junction area of 1.96×10-3 cm2  相似文献   

3.
p+-n junction diodes for sub-0.25-μm CMOS circuits were fabricated using focused ion beam (FIB) Ga implantation into n-Si (100) substrates with background doping of Nb=(5-10)×10 15 and Nb+=(1-10)×1017 cm-3. Implant energy was varied from 2 to 50 keV at doses ranging from 1×1013 to 1×1015 cm-2 with different scan speeds. Rapid thermal annealing (RTA) was performed at either 600 °C or 700°C for 30 s. Diodes fabricated on Nb+ with 10-keV Ga+ exhibited a leakage current (IR) 100× smaller than those fabricated with 50-keV Ga+. Tunneling was determined to be the major current transport mechanism for the diodes fabricated on Nb+ substrates. An optimal condition for IR on Nb+ substrates was obtained at 15 keV/1×1015 cm-2. Diodes annealed at 600°C were found to have an IR 1000× smaller than those annealed at 700°C. I-V characteristics of diodes fabricated on Nb substrates with low-energy Ga+ showed no implant energy dependence. I-V characteristics were also measured as a function of temperature from 25 to 200°C. For diodes implanted with 15-keV Ga +, the cross-over temperatures between Idiff and Ig-r occurred at 106°C for Nb + and at 91°C for Nb substrates  相似文献   

4.
5.
The forward-biased current-voltage and forward-to-reverse biased switching characteristics of p+-n-n+epitaxial diodes are investigated. The manner in which the n-n+junction affects the flow of injected minority carriers in the epitaxial region is characterized by a leakage parameter a. Experimentally, for diodes with epitaxial film widths much less than a diffusion length, a "box" profile accurately describes the injected minority carriers in the n region. The current is found to increase with increased epitaxial width at a fixed bias. A general switching expression for epitaxial diodes is presented and the validity of the expression is shown experimentally. The experimental values of a, determined independently from the current-voltage and switching characteristics, are in good agreement and show that the leakage of the high-low junction is dominated by the recombination of minority carriers in the n-n+space-charge region.  相似文献   

6.
马坤  叶佳意  蒋伟忠 《光电子.激光》2015,26(11):2148-2153
采用高温固相还原反应合成了新型单相荧光粉Ca 9NaZn(PO4)7(CNZP):Ce3+,Tb3+,并对样品的发光性能和 能量传递过程进行分析。研究表明,在波长为310nm紫外光激发下, Ce3+、Tb3+ 双掺体系发射光谱同时包含Ce3+的宽带和Tb3+的 线状发射光谱;在CNZP体系中,Ce3+→Tb3+间能量传递的临界距离Rc=1.216nm,为共振能量传递,机理被证实为四 极子-四极子相互作用。从CIE色度坐标图可以看出,利用 能量传递效果和改变CNZP:0.02Ce3+,yTb3+中 掺杂离子的相对浓度可实现颜色从蓝紫色到绿色的调控,表明所得荧光粉在WLED用紫 外激发荧光粉中具有潜在的应用价值。  相似文献   

7.
徐淦  T.A.King 《中国激光》1988,15(8):506-509
蓝绿色激光由于在水下通讯等方面的应用近年来颇受重视,溴化汞激光就是其中的一种,连同氯化汞、碘化汞激光,统称为HgX(X=Cl,Br,Il)激光,其波长在可见波段一定范围内可调(HgCl:552~559nm,HgBr:495~505nm,HgI:443~445nm).激光跃迁B~2∑~+→X~2∑~+的上能态激发可由HgX_2蒸气在紫外光或快放电作用下分解实现:HgX_2→HgX_2(b~1∑_u~+)→HgX(B~2∑~+)+X(~2P).用后一种方式可制成小型、封闭、长寿命器件,但至今只能得到短脉冲(几+ns)输出.本文目的是通过研  相似文献   

8.
采用高温固相法合成了一系列Gd2(MoO4)3:D y3+, Tm3+白色荧光粉。通过XRD衍射、荧光光谱分析对荧光粉的物相结构以及发光性能进 行了研究,且通过色坐标监测样品的发 光颜色。发射光谱显示荧光粉Gd2-x(MoO4)3:xDy 3+在387nm激发下,Dy3+2F96H15/2跃 迁的蓝光发射及2F96H13/2跃迁的黄光发射最强,随着Dy3+浓度增加 ,色坐标由白光向黄 光转移。在Gd2(MoO4)3:Dy3+,Tm3+的发射光谱中,在361nm激发下,可以同时看到Dy3+的 黄光发射和Tm3+的蓝光发射,即Dy3+2F9/2→6H13/2黄光 跃迁和Tm3+1D23F4蓝光跃 迁,因此,通过调节Dy3+,Tm3+的浓度可以使样品发出白光。当Dy3+浓 度为12%,Tm3+ 浓度为7~14%时,样品皆在白光区。当Dy3+,Tm3+浓度均为12%时,样品的色 坐标为(0.338,0.329 )最接近标准白光(0.33)。同时,在 Dy3+与Tm3+共掺的体系中,可以看到Tm3+向Dy3+的能量传递。  相似文献   

9.
采用高温固相法合成了蓝色荧光粉KNaCa2(PO4)2:Eu2+,利用X射线衍射(XRD)和光谱技术等表征了材料的性能。结果显示,少量Eu 2+的掺入并没有影响KNaCa2(PO4)2的晶体结构。 在399nm近紫外光激发下,KNaCa2(PO4)2:Eu2+材料发 射蓝光,发射光谱为400~600nm, 主发射峰位于471nm,对应Eu2+的4f65d1→ 4f7跃迁发射;471nm发射峰,对应的激发光 谱为250~450nm,主激发峰位于399nm,与近紫外芯片匹配很好。 以365nm近紫外光作为 激发源时,KNaCa2(PO4)2:Eu2+材料的发射强度约为商用蓝色荧光粉BAM:Eu 2+的85%;而以 399nm近紫外光作为激发源时,相较于BAM:Eu2+,KNaCa2(P O4)2:Eu2+材料具有更强的发射强 度。此外,KNaCa2(PO4)2:Eu2+和BAM:Eu2+的CIE色坐标接近,均位于蓝 色区域,色坐标分别 为(0.154,0.154)和(0.141,0.112)。研究结果 表明,KN aCa2(PO4)2:Eu2+是一种在三基色白光LED中有应用前景的蓝色荧光粉。  相似文献   

10.
We present a microscopic mathematical model for the polarization states of a single-frequency Nd3+:YAG laser. It is a plane wave, mean field, vector model carried to all orders in the laser field. The crystal is assumed to be optically pumped longitudinally with a laser of specified polarization. For D2 site symmetry and an odd number of electrons, we establish the phase relationships between the components of the electric dipole matrix elements between the Kramers states. These relationships are central in determining the site-specific coupling between both, the pump and laser fields to the Nd 3+ ions. The laser cavity is assumed to be linear and quasi-isotropic. The residual optical anisotropies are included using a round-trip Jones matrix formalism  相似文献   

11.
The leakage current in high-quality ultrathin silicon nitride/oxide (N/O) stack dielectric is calculated based on a model of one-step electron tunneling through both the nitride and the oxide layers. The results show that the tunneling leakage current in the N/O stack is substantially lower than that in the oxide layer of the same equivalent oxide thickness (EOT). The theoretical leakage current in N/O stack has been found to be a strong function of the nitride/oxide EOT ratio: in the direct tunneling regime, the leakage current decreases monotonically as the M/O ratio increases, while in the Fowler-Nordheim regime the lowest leakage current is realized with a N/O EOT ratio of 1:1. Due to the asymmetry of the N/O barrier shape, the leakage current under substrate injection is higher than that under gate injection, although such a difference becomes smaller in the lower voltage regime. Experimental data obtained from high quality ultrathin N/O stack dielectrics agree well with calculated results  相似文献   

12.
The dielectric properties of Al/Si3N4/p-Si(1 0 0) MIS structure were studied from the C-V and G-V measurements in the frequency range of 1 kHz to 1 MHz and temperature range of 80-300 K. Experimental results shows that the ε′ and ε″ are found to decrease with increasing frequency while the value of ε′ and ε″ increase with increasing temperature, especially, above 160 K. As typical values, the dielectric constant ε′ and dielectric loss ε″ have the values of 7.49, 1.03 at 1 kHz, and only 0.9, 0.02 at 1 MHz, respectively. The ac electrical conductivity (σac) increases with both increasing frequency and temperature. The activation energy of 24 meV was calculated from Arrhenius plot at 1 MHz. The results indicate that the interfacial polarization can be more easily occurred at low frequencies and high temperatures.  相似文献   

13.
掺铊的氯化钾单晶;经X射线辐照和光转型后,获得F_A(Ⅲ)心在77K时,该色心的荧光谱带自1.3至1.7μm,峰位为1.5μm,其激发光谱带自0.9至1.2μm,峰位在1μm附近.F_A(Ⅲ)心的室温光热稳定性,在开始的数天略有衰减,其后趋于平衡,成为稳定的F_A(Ⅲ)心.  相似文献   

14.
The effect of thick film Ni(1−x)CoxMn2O4 in-touch overlay on the X band resonance characteristics of thick film microstrip ring resonator is studied. The thick film overlay decreases the resonance frequency and increases the peak output. From the frequency shift the dielectric constant of the thick film Ni(1−x)CoxMn2O4 has been calculated. For the first time Ag thick film microstrip ring resonator has been used to study thick film Ni(1−x)CoxMn2O4 in the X band.  相似文献   

15.
Spectroscopic and thermal analysis indicates that tellurite glasses doped with B2O3 and GeO2 are promising candidate host materials for wide‐band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross‐sections for Er3+: 4I 13/24I 15/2 transition in this tellurite glass system. We also determined the Judd‐Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of B2O3 for TeO2 in the Er3+‐doped 75TeO2‐20ZnO‐5K2O glass raised the multiphonon relaxation rate for 4I11/24I13/2 transition from 4960 s?1 to 24700 s?1, but shortened the lifetime of the 4I13/2 level by 14 % and reduced the emission cross‐section for the 4I13/24I15/2 transition by 11%. The 15 mol% GeO2 substitution in the same glass system also reduced the emission cross‐section but increased the lifetime by 7%. However, the multiphonon relaxation rate for 4I11/24I13/2 transition was raised merely by 1000 s?1. Therefore, a mixed substitution of B2O3 and GeO2 for TeO2 was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of 4I13/24I15/2 transition in Er3+‐doped tellurite glasses.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号