首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了进一步改善化学镀Ni-P镀层的显微硬度和耐蚀性,将FeSO4加入到化学镀Ni-P镀液中.通过金相显微镜测试了FeSO4对Ni-P镀层表面形貌的影响;采用显微硬度计测试了镀层的显微硬度;采用电化学技术测试了FeSO4对镀层耐蚀性能的影响.结果表明:当镀液中FeSO4的质量浓度小于1.0 g/L时,镀层的沉积速率虽然降...  相似文献   

2.
研究了稀土氯化镧(LaCl3)对Ni-P化学镀层的沉积速率、表面形貌、成分、显微硬度及耐蚀性的影响。结果表明:当Ni-P镀液中LaCl3.7H2O的质量浓度为25mg/L时,Ni-P镀层的沉积速率提高;且此时镀层表面更加致密、平整,镀层的显微硬度提高;此外,镀层中P元素的质量分数也有所增加,镀层表面缺陷更少,镀层的耐蚀性得到改善。  相似文献   

3.
三元合金可以进一步提高Ni-P镀层的性能.在化学镀Ni-P基础镀液中加入CuSO4,考察了CuSO4对镀层沉积速率、表面相貌、显微硬度以及耐蚀性能的影响.结果表明:CuSO4提高了Ni-P镀层的沉积速率,减少了镀层表面的缺陷,改善了镀层的致密性和光亮度,提高了镀层的耐蚀性.  相似文献   

4.
研究了镀液中SiC的质量浓度对化学镀Ni-P-SiC复合镀层中SiC的质量分数、表面形貌、镀速、耐蚀性、硬度、孔隙率及耐磨性的影响,并考察了稀土对镀层性能的影响。结果表明:随着镀液中SiC的质量浓度的增加,镀层中SiC的质量分数先增大后减小;当镀液中SiC的质量浓度过高时,镀层中会出现SiC微粒团聚的现象;化学镀Ni-P-SiC复合镀层的耐蚀性优于化学镀Ni-P合金镀层的耐蚀性;当镀液中SiC的质量浓度为8g/L时,镀层具有较高的硬度和较好的耐磨性;向镀液中添加适量的氧化铈可以细化镀层晶粒。  相似文献   

5.
用复合电沉积方法制备Ni-TiB2复合镀层.与纯Ni镀层对比,考察了TiB2对复合镀层显微硬度、摩擦磨损性和耐蚀性的影响.结果表明:当镀液中TiB2的质量浓度为25 g/L时,复合镀层维氏硬度达到6 400 MPa,较纯Ni镀层5200 MPa增加了23%左右;当镀液中TiB2的质量浓度为15 g/L时,测试条件下复合镀层磨损质量为0.11 mg,耐磨性比纯Ni镀层提高了约5倍;当镀液中TiB2:的质量浓度为15 g/L时,在3.5%的NaCI溶液中测得复合镀层Jcorr为1.123μA/cm2,为纯Ni镀层的25%左右,其耐蚀性也得到了提高.  相似文献   

6.
梁平 《电镀与环保》2010,30(1):28-30
研究了硫脲、碘酸钾以及两者复合后对2024铝合金化学镀Ni-P合金镀层沉积速率的影响。结果表明:硫脲、碘酸钾都可以促进Ni-P合金在铝合金表面的沉积,且当镀液中硫脲、碘酸钾的质量浓度分别为3mg/L和20mg/L时,沉积速率都达到了最大值;并且当两者复合以后,镀层沉积速率又明显提高;当镀液中硫脲和碘酸钾的质量浓度比为1:5时,沉积速率达到最高值,此时镀层质量良好,耐蚀性高。  相似文献   

7.
Ni-Fe-SiC复合镀层的制备及性能研究   总被引:1,自引:0,他引:1  
用电沉积的方法在含NiSO4及FeSO4的电解质溶液中制备了Ni-Fe-SiC复合镀层.通过正交试验,研究了Fe2 与Ni2 的浓度比、温度、pH和电流密度对镀层中SiC质量分数的影响,讨论了镀液中SiC含量与镀层显微硬度的关系,确定了最佳工艺条件为:c(Fe2 )/c(Ni2 )=0.09,镀液温度55 ℃,pH=3.0,电流密度1.8 A/dm2.在最佳工艺条件下所获得的复合镀层,显微硬度达650~850 HV,结合力和耐蚀性均良好.  相似文献   

8.
采用柠檬酸钠与乳酸组成复合配位剂在AZ 31B镁合金上酸性化学镀镍-磷合金.研究复合配位剂的质量浓度比对镀层沉积速率、表面形貌、镀层成分、显微硬度及耐蚀性的影响.结果表明:柠檬酸钠与乳酸的质量浓度比为0.6时,镀速较快,镀层表面光亮、均匀、致密,镀层中磷的质量分数高,镀层显微硬度及耐蚀性较AZ 31B镁合金有显著提高.  相似文献   

9.
基于提高汽车用碳素钢表面性能的考虑,在碳素钢基体表面制备了Ni-W合金镀层。研究了镀液pH值对Ni-W合金镀层的表面形貌、微观结构、显微硬度及耐蚀性的影响。结果表明:当镀液pH值为5.0~6.0时,镀层表面非常平整,几乎看不出任何的结构特征;而当镀液pH值为7.5~8.5时,镀层呈细晶团簇结构。随着镀液pH值的升高,电流效率降低,镀层厚度随之减小,显微硬度呈先增大后减小的趋势。当镀液pH值为6.0时,镀层的显微硬度最高(为6 454MPa),在质量分数为3.5%的NaCl溶液中具有最佳的耐蚀性。  相似文献   

10.
考察了镀液pH值对化学镀Ni-P合金镀层沉积速率的影响。利用光学显微镜观察了在不同镀液pH值下所得镀层的表面形貌,采用极化曲线和电化学阻抗谱等电化学方法测试了镀液pH值对镀层耐蚀性的影响。结果表明:随着镀液pH值的增加,镀层沉积速率先增大后减小;当镀液pH值为7时,镀层表面最为致密,缺陷数量最少,并容易发生钝化,此时镀层表现出最好的耐蚀性。  相似文献   

11.
杨友 《电镀与环保》2010,30(4):23-26
在AZ 91D镁合金表面制备Ni-P/纳米SiC化学复合镀层.探讨镀液中纳米SiC微粒的质量浓度对镀速、复合镀层性能等的影响.利用扫描电镜观察镀层表面形貌,采用能谱分析仪进行镀层表面成分的定性分析,采用显微硬度计测试镀层硬度,并对不同工艺下获得的镀层进行快速磨损实验.结果表明:镀液中添加适量的纳米SiC微粒,镀速和镀层硬度都有显著的提高.当镀液中纳米SiC的质量浓度为9 g/L时,镀速可达到25.6 μm/h;当镀液中纳米SiC的质量浓度为7 g/L时,镀层的维氏硬度可达到9 380 MPa;同时镀层的耐磨性能相比于Ni-P合金镀层的也有显著提高.  相似文献   

12.
贾瑛  冯程  张颖 《电镀与环保》2012,32(2):27-30
在确定化学镀Ni-Fe-Co-P镀液配方的基础上,往镀液中加入硝酸铈,在涤沦织物上制备Ni-Fe-Co-P-Ce合金镀层。讨论了硝酸铈的质量浓度对镀层的沉积速率、表面形貌、成分及耐蚀性能等的影响,得出其最佳的质量浓度为0.4g/L。  相似文献   

13.
采用电沉积方法在45~#钢表面制备出Cu-Ni-Sn-Al_2O_3复合镀层。研究了镀液中Al_2O_3的质量浓度对镀层的硬度、耐磨性及结合力的影响,并分别用SEM和XRD表征了镀层的表面形貌和结构。结果表明:当镀液中Al_2O_3的质量浓度为15g/L时,镀层具有较好的耐磨性。  相似文献   

14.
研究了稀土元素La介入化学镀Ni-Fe-B合金的镀覆工艺.在正交试验的基础上获得了化学镀Ni-Fe-B-La合金的基础配方,分析了加入稀土元素La后化学镀液中各种组分对镀层沉积速率的影响,并考察了镀液稳定性和镀层质量.通过稀土元素La的介入,Ni-Fe-B-La合金镀液稳定性和镀层的质量得到明显的改善;但随La含量的增加,沉积速率达到最大值后有降低趋势.  相似文献   

15.
以离子液体1-丁基-3-甲基咪唑四氟硼酸盐(BMIM-BF4)作为溶剂,加入自制的无水氟硼酸盐组成电解液,采用脉冲电沉积制备Tb-Fe-Co合金镀层,所得镀层均匀、致密、有金属光泽且镀层中铽的质量分数较高。考察了脉冲电压、脉冲占空比和脉冲频率对镀层表面形貌及镀层中铽的质量分数的影响,在最优工艺条件下,所制得的镀层中铽的质量分数可达50%。  相似文献   

16.
在含FeSO4·7H2O、Na2WO4·2H2O、NaH2PO2·H2O、Na3C6H5O7·2H2O、C6H8O7·H2O、NH3·H2O和苯亚磺酸钠的碱性镀液中,电沉积得到Fe–W–P三元合金,分析了不同镀液成分时所得镀层的化学组成,讨论了温度、pH、电流密度及NH3·H2O用量对镀层沉积速率和显微硬度的影响。结果表明:除NaH2PO2·H2O外,镀液中其他组分对镀层组成均有显著影响;工艺参数的改变对镀层沉积速率和显微硬度有一定影响,NH3·H2O体积分数对沉积速率的影响尤其显著。电沉积所得Fe–W–P合金镀层具有典型的非晶态结构,其耐蚀性略优于00Cr17Ni14Mo2不锈钢。  相似文献   

17.
采用脉冲电镀在Q235钢表面制备Ni-Cr-Mo合金镀层。考察了镀液组分对镀层组成、沉积速率、表面形貌、粗糙度、孔隙率和耐蚀性的影响。结果表明,镀液组分NiSO_4·6H_2O、CrCl_3·6H_2O和Na_3MoO_4·2H_2O的浓度比为3∶2∶1、3∶1∶2和10∶1∶1时,镀层结合力较好,镀层组成差别较小;浓度比为10∶1∶1时,Ni-Cr-Mo镀层沉积速率最大,表面颗粒尺寸最小,粗糙度最低,孔隙率最少,耐蚀性最好。  相似文献   

18.
采用复合电镀技术制备了A u-S iO2纳米微粒复合镀层,研究了镀液中S iO2纳米粉体的浓度对A u-S iO2纳米微粒复合镀层结构与性能的影响,并用扫描电子显微镜(SEM)及能谱仪(EDX)对复合镀层进行了表面形貌和能谱分析,使用X-射线衍射仪(XRD)测试分析了粉体对金镀层组织结构的影响。结果表明,随着镀液中S iO2浓度的增加,镀层中S iO2含量与镀层硬度随之增加,在镀液中S iO2质量浓度为15 g/L时,两者出现最大值;另外S iO2粉体的加入细化了复合镀层的结晶结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号