首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of mass transfer from the gas to water phases was measured in a commercial, high-shear, laboratory mixer under conditions typical of medium-consistency bleaching. The gas—liquid volumetric mass transfer coefficient, kLa, was measured using the cobalt-catalyzed sulfite oxidation technique. Suspensions of fully-bleached kraft pulp and synthetic nylon fibres were used, with mass transfer rates measured over a range of suspension compositions and mixer operating conditions. In the presence of pulp fibre, mass transfer rates were significantly reduced over the comparable water cases. The same dramatic decrease in mass transfer was not observed for the nylon suspensions, although kLa did decrease with increasing suspension concentration. Comparison of this data with that obtained from ozone bleaching experiments confirmed that at medium-consistency gas—liquid mass transfer controls ozone bleaching.  相似文献   

2.
Gas–liquid mass transfer in pulp fibre suspensions in a batch‐operated bubble column is explained by observations of bubble size and shape made in a 2D column. Two pulp fibre suspensions (hardwood and softwood kraft) were studied over a range of suspension mass concentrations and gas flow rates. For a given gas flow rate, bubble size was found to increase as suspension concentration increased, moving from smaller spherical/elliptical bubbles to larger spherical‐capped/dimpled‐elliptical bubbles. At relatively low mass concentrations (Cm = 2–3% for the softwood and Cm ? 7% for the hardwood pulp) distinct bubbles were no longer observed in the suspension. Instead, a network of channels formed through which gas flowed. In the bubble column, the volumetric gas–liquid mass transfer rate, kLa, decreased with increasing suspension concentration. From the 2D studies, this occurred as bubble size and rise velocity increased, which would decrease overall bubble surface area and gas holdup in the column. A minimum in kLa occurred between Cm = 2% and 4% which depended on pulp type and was reached near the mass concentration where the flow channels first formed.  相似文献   

3.
The volumetric gas‐liquid mass transfer rate, kLa, was measured under batch conditions in a 0.28 m diameter laboratory‐scale retention column. Tests on water, and on unbleached kraft (UBK) pulp suspensions (mass fractions, Cm from 0.013 to 0.09) were made with air or nitrogen sparged through the column at superficial gas velocities between 0.0015 to 0.05 m/s. kLa varied with suspension mass concentration and superficial gas velocity, initially decreasing with increasing mass concentration, reaching a minimum between Cm = 0.03 and 0.06, and then increasing. The minimum in kLa coincided with a change in hydrodynamics within the column, from bubble column behaviour below Cm = 0.03 to porous solid behaviour above Cm = 0.06.  相似文献   

4.
An experimental investigation was made to measure interfacial area, a, and liquid‐side volumetric mass transfer coefficient, kLa, in a downflow bubble column by chemical methods viz., absorbing CO2 in aqueous sodium hydroxide and sodium carbonate/bicarbonate buffer solution respectively. The effect of gas and liquid flowrate and nozzle sizes on a and kLa were investigated. The experimental data obtained in the present system were analyzed and correlations were developed to predict a and kLa in terms of superficial gas velocity. The variation of a and kLa with specific power input were shown in graphical plot and compared with other gas‐liquid systems.  相似文献   

5.
In this work, the gas‐liquid mass transfer in a lab‐scale fibrous bed reactor with liquid recycle was studied. The volumetric gas‐liquid mass transfer coefficient, kLa, is determined over a range of the superficial liquid velocity (0.0042–0.0126 m.s–1), gas velocity (0.006–0.021 m.s–1), surface tension (35–72 mN/m), and viscosity (1–6 mPa.s). Increasing fluid velocities and viscosity, and decreasing interfacial tension, the volumetric oxygen transfer coefficient increased. In contrast to the case of co‐current flow, the effect of gas superficial velocity was found to be more significant than the liquid superficial velocity. This behavior is explained by variation of the coalescing gas fraction and the reduction in bubble size. A correlation for kLa is proposed. The predicted values deviate within ± 15 % from the experimental values, thus, implying that the equation can be used to predict gas‐liquid mass transfer rates in fibrous bed recycle bioreactors.  相似文献   

6.
The main objective of this work was to propose a new process for household fume incineration treatment: the droplet column. A feature of this upward gas‐liquid reactor which makes it original, is to use high superficial gas velocities (13 m s–1) which allow acid gas scrubbing at low energy costs. Tests were conducted to characterize the hydrodynamics, mass transfer performances, and acid gas scrubbing under various conditions of superficial gas velocity (from 10.0 to 12.0 m s–1) and superficial liquid velocity (from 9.4·10–3 to 18.9·10–3 m s–1). The following parameters characterized the hydrodynamics: pressure drops, liquid hold‐ups, and liquid residence time distribution were identified and investigated with respect to flow conditions. To characterize mass transfer in the droplet column, three parameters were determined: the gas‐liquid interfacial area (a), the liquid‐phase volumetric mass transfer coefficient (kLa) and the gas‐phase volumetric mass transfer coefficient (kGa). Gas absorption with chemical reaction methods were applied to evaluate a and kGa, while a physical absorption method was used to estimate kLa. The influence of the gas and liquid velocities on a, kLa, and kGa were investigated. Furthermore, tests were conducted to examine the utility of the droplet column for the acid gas scrubbing, of gases like hydrogen chloride (HCl) and sulfur dioxide (SO2). This is a process of high efficiency and the amount of pollutants in the cleaned air is always much lower than the regulatory European standards imposed on household waste incinerators.  相似文献   

7.
The gas‐liquid mass transfer behavior of syngas components, H2 and CO, has been studied in a three‐phase bubble column reactor at industrial conditions. The influences of the main operating conditions, such as temperature, pressure, superficial gas velocity and solid concentration, have been studied systematically. The volumetric liquid‐side mass transfer coefficient kLa is obtained by measuring the dissolution rate of H2 and CO. The gas holdup and the bubble size distribution in the reactor are measured by an optical fiber technique, the specific gas‐liquid interfacial area aand the liquid‐side mass transfer coefficient kL are calculated based on the experimental measurements. Empirical correlations are proposed to predict kL and a values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.  相似文献   

8.
In this work the sulfite oxidation (SOM), dynamic pressure‐step (DPM) and gassing‐out (GOM) methods were compared for volumetric mass transfer coefficient measurement in an airlift reactor with internal loop. As a liquid phase both, non‐coalescent and coalescent media were used. Among the methods discussed here, the mass transfer coefficient (kLa) values obtained by the DPM appear as the most reliable as they were found to be independent of oxygen concentration in the inlet gas, which confirmed the physical correctness of this method. The difference between data measured using air and oxygen was not higher than 10%, which was comparable to the scatter of experimental data. It has been found that the sulfite oxidation method yielded kLa values only a little higher than those obtained by the DPM and the difference did not exceed 10%. Up to an inlet gas velocity (UGC) of ?0.03 m s?1 the GOM using oxygen as a gas medium gave kLa values in fact identical with those obtained by the DPM. At higher flows of the inlet gas, the GOM yielded kLa values as much as 15% lower. The enhancement in oxygen mass transfer rate determined in non‐coalescent media was estimated to be up to +15%, when compared with a coalescent batch. The experimental dependence of kLa vs the overall gas hold‐up was described by an empirical correlation. 1 Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Experimental results of the volumetric mass transfer coefficient kLaPh in a microstructured rectangular channel (Miprowa®) with static mixers are presented. The physical absorption of CO2 in H2O was identified as suitable measuring method. The results include a gas‐liquid flow map and the identification of different flow regimes as well as first systematic measurements of the kLaPh value as a function of various process settings like gas and liquid flow rate and gas holdup. A first comparison of Miprowa® with established gas‐liquid contact devices like stirred tank and bubble column is given.  相似文献   

10.
Yield stresses were determined for commercial wood pulp suspensions and synthetic fibre suspensions of low and medium mass concentration. The yield stresses measured represent interfibre failure of the network rather than failure between the suspension and a solid surface. The measurements were carried out in a rotary viscometer at low yield stresses and in a concentric rotary shear tester at yield stresses in excess of 2500 Pa. The experimental results were correlated with the volumetric concentration Cv in equations of the form τy = aCbv where a and b are constant for a given fibre type. It was found that b ? 3, in agreement with the predictions of a theoretical model of fibre network strength based upon the interlocking of elastically bent fibres. The dependence of the yield stress on the fibre properties of aspect ratio and modulus of elasticity was not adequately predicted by the model, suggesting that fibre bending alone did not account for the network strength over the concentration range studied.  相似文献   

11.
The aim of this work is to investigate a co‐current air‐liquid downward flow bubble column with air entrainment by liquid injection nozzle in order to use it as an aerator in activated sludge treatment plants. The study concerns the determination of mass transfer efficiency by measuring the mass transfer coefficient, kLa, both in clean water and in activated sludge. In clean water, this parameter is determined by three methods, i.e., gassing out method, absorption with chemical reaction and off‐gas method. In activated sludge medium, kLa values are measured by two methods, i.e., sludge reoxygenation and the hydrogen‐peroxide method. The values of kLa obtained in clean water are compared to those obtained in sludge, enabling the assessment of the α factor, i.e., ratio of oxygen transfer coefficient sludge/clean water. The results are in good agreement with those reported previously in the literature.  相似文献   

12.
The gas–liquid interfacial area and mass transfer coefficient for absorption of oxygen from air into water, aqueous glycerol solutions up to 1.5% (w/w) and fermentation medium containing glucose up to a 3% concentration were determined in a co‐current down flow contacting column (CDCC; 0.05 m i.d. and 0.8 m length). Experimental studies were conducted using various nozzle diameters at different gas and re‐circulation liquid rates. Specific interfacial area (a) is determined from the fractional gas hold‐up (εG) and the average bubble diameter (db). Once the interfacial area is determined, the volumetric mass transfer coefficient (kLa) is then used to evaluate the film mass transfer coefficient in the CDCC. The effects of operating conditions and liquid properties on the specific interfacial area were investigated. The values of interfacial area in air–aqueous glycerol solutions and fermentation media were found to be lower than those in the air–water system. As far as experimental conditions were concerned, the values of interfacial area obtained from this study were found to be considerably higher than those of the literature values of conventional bubble columns. The penetration theory is used to interpret the film mass transfer coefficient and results match the experimental kL data reasonably well. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
The mixing and mass transfer characteristics of draft‐tube airlift bioreactors (DTAB) for a water‐in‐kerosene microemulsion, as a cold model of petroleum biodesulfurization, were studied. Incomplete gas disengagement at the top‐section of the DTAB and hence high gas recirculation were obtained with the microemulsion system for all the top‐section configurations employed in the present study especially at the high airflow rates. The ratio (S) of the volumes of the riser and the downcomer to the top‐section together with the gas disengagement abilities of the gas separator were both found to affect the mixing performance of the DTAB employed for the microemulsion system. Increase in the draft‐tube height resulted in significant increase in the mixing time (tm) and a slight increase in the overall volumetric oxygen transfer coefficient (kLa). Increase in the diameter of the top‐section and the height of the liquid above the draft‐tube led to a decrease in kLa, the latter effect being less prominent. New correlations were developed that predicted the mixing time and oxygen transfer coefficients obtained in the present work with reasonable accuracy. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

15.
Volumetric mass transfer coefficients (kLa) and power input (P) are often the key parameters in the design of gas‐liquid contactors. However, due to the limitations of most measurement methods, there is a lack of reliable data for predicting kLa for non‐coalescent batches under high energy dissipation rates. Accurate kLa and P correlations are proposed. The reliability of the correlations is ensured by using experimental data from a wide range of process conditions conducted in multiple‐impeller vessels of both laboratory scale and pilot scale, and including both non‐coalescent and coalescent batches. Applying the proposed correlations, the scale‐up and optimization of industrial vessels can be performed more accurately.  相似文献   

16.
An internal loop airlift‐driven fibrous bed bioreactor (ILALFBB) was designed and developed with a high degree of flexibility to handle genetically engineered and fragile shear‐sensitive cells. The mixing and oxygen mass transfer characteristics have been investigated. A cotton fibre was set in the downcomer of the ILALB to represent the fibrous packed bed and the outcome results were compared with those of the polyurethane foam (PUF) packed and unpacked ILALB systems. The effects of fibre, packing height, bed top and bottom clearances, spacing between adjacent fibre surfaces, and superficial gas velocity were investigated. The liquid phase mixing output variables included the liquid circulation velocity (ULc), circulation time (tLc), mixing time (tLm), Bodenstein number (BoL), and axial dispersion coefficient (EL), whereas the mass transfer out variable was the KLa. BoL and EL in the riser and downcomer regions of all packed systems increased with increasing in packing height, packing top clearance, and superficial gas velocity, except the overall BoL was independent of gas velocity at low gas velocities. The BoL was found highest in the riser of the large cotton and small PUF packed system with large spacing and the EL in the downcomer of PUF packed systems with smaller spacing between fibre surfaces. Increased amounts of packing in the ILALB, whether in the form of cotton or PUF decreased the ULc in the bioreactor because of the increased frictional resistance and tortuosity. The reduction in ULc was significant for large packing with smaller spacing between fibre surfaces and increased bottom clearances of the cotton packed system. High circulation times (tLc) and shorter mixing times (tLm) were achieved using small PUF packing with large top clearance. Relatively high KLa values were obtained using large packing with large top clearances and spacing between fibre surfaces. The boost in KLa was associated with increased gas holdup and/or interfacial area, due to bubble breakage by the shearing action of the fibrous‐bed. Empirical correlation proposed for EL, BoL, and KLa gave a good fit of the experimental data.  相似文献   

17.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

18.
Volumetric mass transfer coefficients, kLa, just as power input are considered as essential parameters for mechanically agitated gas‐liquid contactors in relation to their optimization and design. The knowledge of power input is crucial for the prediction of other mass transfer characteristics. A power input correlation is created for the industrial design of the process with a non‐coalescent batch that would be appropriate for a broad range of operational conditions. The recommended resulting correlation is able to predict the power input for impellers in industrial‐scale design for a significant scope of operational conditions.  相似文献   

19.
The volumetric mass transfer coefficient kLa in a 0.1 m‐diameter bubble column was studied for an air‐slurry system. A C9‐C11 n‐paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n‐paraffin oil had properties similar to those of the liquid phase in a commercial Fischer‐Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8 m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ?S ranged from 0 to 0.5. The experimental results obtained show that the gas hold‐up ?G decreases with an increase in slurry concentration, with this decrease being most significant when ?S < 0.2. kLa/?G was found to be practically independent of the superficial gas velocity when UG > 0.1 m/s is taking on values predominantly between 0.4 and 0.6 s–1 when ?S = 0.1 to 0.4, and 0.29 s–1, when ?S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial‐size bubble column slurry reactor, with a particular focus on the Fischer‐Tropsch process as well as high gas velocities and high slurry concentrations.  相似文献   

20.
The mass transfer process under CO2‐water Taylor flow was experimentally investigated in circular capillaries with different lengths. The measured volumetric mass transfer coefficient kLa was found to reduce with the increase of mass transfer time under the same operational conditions. With computational fluid dynamics simulations, the instantaneous kLa values decreased sharply at the initial stage of the mass transfer process. The effects of numerous experimental parameters on separated contribution of kLa were investigated for different dimensionless mass transfer times. The instantaneous kLa values for arbitary transfer times could be calculated and agreed well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号