首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

2.
This paper presents results of a study of melt‐processed immiscible polymer blends of high impact polystyrene (HIPS), liquid crystalline polymer (LCP) and carbon black (CB). Relationships between composition, electrical resistivity and morphology of the blends produced by Brabender mixing followed by compression molding, extrusion through a capillary rheometer, extrusion through a single‐screw extruder and injection molding were investigated. The LCP phase morphology in the blends was found sensitive to the processing conditions. A blend composition of at least 20 wt% LCP and 2 phr CB is necessary to preserve the conductivity of filaments produced over a wide range of shear rates. Enhancement of conductivity of blends containing CB and 30 wt% or more LCP was observed, under processing at 270°C and increasing levels of shear rate. An important role of the skin region in determining the resisitivy of injection molded samples was found. A good agreement between resistivity values of extruded or injection molded blends with resistivity values of filaments produced at similar conditions by a capillary rheometer was shown. Hence, the study of shear rate effect on resistivity of capillary rheometer filaments may serve as a predictor of resistivity behavior in real processing procedures. Polym. Eng. Sci. 44:528–540, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

4.
Zhaobin Qiu  Wantai Yang  Toshio Nishi 《Polymer》2005,46(25):11814-11819
Biodegradable polymer blends of poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) blends were prepared with the ratio of PHBV/PCL ranging from 80/20-20/80 by co-dissolving the two polyesters in chloroform and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to investigate the miscibility and crystallization of PHBV/PCL blends. Experimental results indicated that PHBV showed no miscibility with PCL for PHBV/PCL blends as evidenced by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Crystallization of PHBV and PCL was studied with DSC and analyzed by the Avrami equation by using two-step crystallization in the PHBV/PCL blends. The crystallization rate of PHBV at 70 °C decreased with the increase of PCL in the blends, while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL at 42 °C, the crystallization rate increased with the addition of PHBV, and the crystallization mechanism changed, too, indicating that the crystallization of PHBV at 70 °C had an apparent influence on the crystallization of PCL at 42 °C.  相似文献   

5.
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

7.
Blends of poly(carprolactone)-poly(ethylene glycol) block polymer (PCE) with low-density polyethylene (LDPE) were prepared by extrusion followed by compression molding into thin film specimens. The morphology, thermal properties, degradation, and mechanical behavior of the blends were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), water immersion, static tensile testing, and dynamic mechanical analysis (DMA). The LDPE/PCE blends were immiscible for all chemical compositions. A LDPE/PCE (75/25 wt%) blend exhibited small reductions in weight and tensile strength after immersion in a buffer solution (pH = 5.0) at 50°C for extended periods of time. However, grafting maleic anhydride onto the LDPE/PCE blends improved the compatibility between the LDPE and PCE phases. Consequently, a 75/25 wt% blend of maleated LDPE/PCE exhibited significant losses in weight and tensile strength after immersion in the buffer solution. For comparison, blends of poly(caprolactone) (PCL) with LDPE were fabricated by similar techniques. The effect of compatibilizer on the degradation of LDPE/PCE and LDPE/PCL is discussed.  相似文献   

8.
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420.  相似文献   

9.
The apparent inability of a single biomaterial to meet all the requirements for tissue engineering scaffolds has led to continual research in novel engineered biomaterials. One method to provide new materials and fine‐tune their properties is via mixing materials. In this study, a biodegradable powder blend of poly(ε‐caprolactone) (PCL), polyglycolide (PGA), and poly(ethylene oxide) (PEO) was prepared and three‐dimensional interconnected porous PCL/PGA scaffolds were fabricated by combining cryomilling and compression molding/polymer leaching techniques. The resultant porous scaffolds exhibited co‐continuous morphologies with ~50% porosity. Mean pore sizes of 24 and 56 μm were achieved by varying milling time. The scaffolds displayed high mechanical properties and water uptake, in addition to a remarkably fast degradation rate. The results demonstrate the potential of this fabrication approach to obtain PCL/PGA blend scaffolds with interconnected porosity. In general, these results provide significant insight into an approach that will lead to the development of new composites and blends in scaffold manufacturing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42471.  相似文献   

10.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

11.
Extruded films of liquid crystalline polymer (LCP)/fluoropolymer blends were melt drawn to develop uniaxial orientation of a microfibrillar dispersed LCP phase. The anisotropy of the films increased with increasing draw and LCP content in the blend. Laminated composite plates were prepared using the extruded sheets as prepreg. The mechanical properties and coefficient of thermal expansion (CTE) of the prepreg and laminates agreed well with predictions from composite lamination theories. The potential for replacing glass fiber reinforced fluoropolymers with LCP/fluoropolymer blends in applications such as microwave circuit boards is discussed.  相似文献   

12.
The mechanical properties and the response to mechanical load of continuous glass fiber reinforced polyethylene terephthalate (GF/PET) laminates have been characterized. The laminates were manufactured by compression molding stacks of novel woven and warp knitted fabrics produced from commingled yarns. The laminate quality was examined by means of optical and scanning electron microscopy. Few voids were found and the laminate quality was good. Resin pockets occurred in the woven laminates, originating from the architecture of the woven fabric. The strength of the fiber/matrix interface was poor. Some problems were encountered while manufacturing the laminates. These led to fiber misalignment and consequently resulted in tensile mechanical properties that were slightly lower than expected. Flexural failures all initiated as a result of compression, and it is possible that the compression strength of the matrix material, rather than its tensile strength, might limit the ultimate mechanical performance of the composites. Flexural failures for both materials were very gradual. The warp knitted laminates were stronger and stiffer than the woven laminates. The impact behavior was also investigated; the woven laminates exhibited superior damage tolerance compared with the warp knitted laminates.  相似文献   

13.
Blends of a polyester elastomer (PEL) having a hard segment of polyester (PBT) and soft segment of polyether (PTMG) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology of the LCP/PEL blends was characterized under different processing conditions. To determine what conditions were necessary for the development of a fibrillar morphology of LCP, we have studied the effect of processing method (extrusion and injection molding), injection molding temperature (below and above the melting point of LCP), and gate position in the mold (direct gate and side gate). SEM studies revealed that some extensional flow was required for the fibrillar formation of LCP and the fibrillar structure of LCP was controlled by the processing method. The morphology of the blends was found to be affected by their compositions and processing conditions. SEM studies revealed that finely dispersed spherical domains of LCP were formed in the PEL matrix and the inclusions were deformed in fibrils from the spherical droplets with increasing LCP content and injection temperature. The mechanical properties of the LCP/PEL blends were also found to be affected by their compositions and processing conditions. The mechanical properties of LCP/PEL blends were very similar to those of polymeric composite. An attempt was made to correlate the structure of the blends from the scanning electron microscope with the measured mechanical properties. All of the aspects of the morphology were possible to explain in terms of the mechanical properties of the blends. A DSC study revealed that the crystallization of PEL was accelerated by the addition of LCP in the matrix and a partial compatibility between LCP and PEL was predicted. The rheological behavior of the LCP/PEL blends was found to be very different from that of the parent polymers, and significant viscosity reductions were observed in the blend consisting of only 5 wt% of LCP.  相似文献   

14.
Blends of poly(butylene terephthalate) (PBT) with three different thermotropic liquid crystalline polyesters (TLCPs) were prepared. The first TLCP (HBH-6) consists of diad aromaticester type mesogenic units and the hexamethylene spacers along the main chain, and the second (TB-S6) is a wholly aromatic polyester TLCP having alkoxy side groups on the terephthaloyl moiety. The last (TR-4,6) is an LC copolymer comsisting of triad aromatic ester type mesogenic units and two differents spacers; tetramethylene and hexamethylene units. Blends of TLCP with PBT were melt spum at different LCP contents and differnt draw ratios to produce monofilaments. For the HBH-6/PBT and TB-S6/PBT blends, the ultimate tensile strength showed a maximum value at the 5 wt% level of LCP in the blends, and then it decreased when the LCP content was increased up to 20%. On the other hand, the initial modulus monotonically increased with increasing LCP content in all cases. The blends with TB-S6 showed the highest tensile properties of the three blends systems. This can be ascribed to the highest rigidity of the polymer chain, which still carries relatively long alkoxy substituents that promote sufficient adhesion between the LCP and PBT matrix. When compared with the PBT fiber itself, the fibers obtained from the 5% TB-S6/PBT blends exhibited an improvement in tensile strength by > 25% and in tensile modulus by ~ 200%.  相似文献   

15.
Green composites composed of regenerated cellulose (lyocell) fabric and biodegradable polyesters [poly(3‐hydroxybutyrate‐co‐3‐hydroxyvarelate) (PHBV), poly(butylene succinate) (PBS), and poly(lactic acid) (PLA)] were prepared by compression‐molding method. The tensile moduli and strength of all the biodegradable polyester/lyocell composites increased with increasing fiber content. When the obtained PLA/lyocell composites were annealed at 100°C for 3 h, the tensile strength and moduli were lowered despite the increase of degree of crystallization of the PLA component. The SEM observation of the composites revealed that the surface of the annealed composite has many cracks caused by the shrinkage of the PLA adhered to lyocell fabric. Multilayered PLA/lyocell laminate composites showed considerably higher Izod impact strength than PLA. As a result of the soil viral test, although the order of higher weight loss for the single substance was lyocell > PHBV > PBS > PLA, the biodegradability of the green composites did not reflect the order of a single substance because of the structural defect of the composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3857–3863, 2004  相似文献   

16.
The compatibilizing efficiency of three different compatibilizers in thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends was investigated after their incorporation via melt‐mixing. The compatibilizers studied were poly‐ε‐caprolactone (PCL), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA). All compatibilizers were synthesized by living anionic polymerization. Investigations of thermal and thermo‐mechanical properties performed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DTMA), respectively, were systematically classified into two groups, i.e. blends of TPU or SAN with 20 wt% of different compatibilizers (so‐called limit conditions) and TPU/SAN 25/75 blends with 5 wt% of different compatibilizers. In order to determine the compatibilizer's location, morphology of TPU/SAN 25/75 blends was studied with transmission electron microscopy (TEM). Different compatibilization activity was found for different systems. Blends compatibilized with PCL showed superior properties over the other blends. Polym. Eng. Sci. 44:838–852, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
The anaerobic biodegradation of polymers by soil microorganisms was investigated in shaking flask cultures at different rotation speeds or energy dissipation rates. The polymers included poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV), poly(?‐caprolactone) (PCL), polystyrene (PS), two binary PHBV/PCL blends (80/20 and 25/75 w/w), and a triple PHBV/PCL/PS blend (76/5/19 w/w/w). The specific degradation rate of PHBV found from the specimen's residual mass fraction with time was constant after a lag phase and was significantly affected by the agitation strength (<0.5 day?1 at 60 rpm or lower and >15 day?1 at 120 rpm or greater). Tiny polymer fragments were formed on the specimen surface and observed with scanning electron microscopy during degradation. The detachment of those fragments under high hydraulic shear stress caused surface erosion and renewal, resulting in the high degradation rate. The hydraulic shear stress (0.6 Pa) at an energy dissipation rate of 0.5 W/kg was a threshold level, above which the external force did not increase the degradation rate very much. PHBV degradation in the binary blends with compatible PCL was retarded, depending on the blend composition. Blending PHBV with noncompatible PS did not affect PHBV degradation, and the overall degradation rate of the triple blend was faster than the rate of PHBV alone because of the surface erosion of both PHBV and nondegradable PS fragments from the specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1036–1045, 2002  相似文献   

18.
Blends of an extrusion‐grade polyethylene and two different liquid crystalline polymers of Vectra type were prepared by melt mixing using poly(ethylene‐comethacrylic acid) as compatibilizer. Oxygen and water vapor permeability, transparency and welding strength of compression molded and film blown specimens were studied. The compression molded blends showed gas permeabilities conforming to the Maxwell equation assuming low permeability liquid crystalline polymer spheres in a high permeability polyethylene matrix. One of the liquid crystalline polymers with suitable rheological properties formed a more continuous phase in the film blown blends and a substantial decrease in oxygen and water vapor permeability was observed in these blends. The compression molded blends with 50% liquid crystalline polymer and some of blow molded blends showed very high gas permeabilities. It is believed that voids forming continuous paths through the structure were present in these samples. The blends showed significantly higher opacity than pure polyethylene.  相似文献   

19.
Biodegradable starch‐polyester polymer composites are useful in many applications ranging from numerous packaging end‐uses to tissue engineering. However the amount of starch that can form composites with polyesters without significant property deterioration is typically less than 25% because of thermodynamic immiscibility between the two polymers. We have developed a reactive extrusion process in which high amounts of starch (approx. 40 wt%) can be blended with a biodegradable polyester (polycaprolactone, PCL) resulting in tough nanocomposite blends with elongational properties approaching that of 100% PCL. We hypothesize that starch was oxidized and then crosslinked with PCL in the presence of an oxidizing/crosslinking agent and modified montmorillonite (MMT) organoclay, thus compatibilizing the two polymers. Starch, PCL, plasticizer, MMT organoclay, oxidizing/crosslinking agent and catalysts were extruded in a co‐rotating twin‐screw extruder and injection molded at 120° C. Elongational properties of reactively extruded starch‐PCL nanocomposite blends approached that of 100% PCL at 3 and 6 wt% organoclay. Strength and modulus remained the same as starch‐PCL composites prepared from simple physical mixing without any crosslinking. X‐ray diffraction results showed mainly intercalated flocculated behavior of clay at 1,3,6, and 9wt% organoclay. Scanning electron microscopy (SEM) showed that there was improved starch‐PCL interfacial adhesion in reactively extruded blends with crosslinking than in starch‐PCL composites without crosslinking. Dynamic mechanical analysis showed changes in primary α‐transition temperatures for both the starch and PCL fractions, reflecting crosslinking changes in the nanocomposite blends at different organoclay contents. Also starch‐polytetramethylene adipate‐co‐terephthalate (PAT) blends prepared by the above reactive extrusion process showed the same trend of elongational properties approaching that of 100% PAT. The reactive extrusion concept can be extended to other starch‐PCL like polymer blends with polymers like polyvinyl alcohol on one side and polybutylene succinate, polyhydroxy butyrate‐valerate and polylactic acid on the other to create cheap, novel and compatible biodegradable polymer blends with increased toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1072–1082, 2005  相似文献   

20.
In this article, biodegradable polymer/clay nanocomposites were prepared. The matrices used were based on blends of Polycaprolactone (PCL) and Anhydride‐Functional Polycaprolactone (PCL‐gMA) with Thermoplastic Starch (TPS). Nanocomposites films based on PCL/TPS and PCL/PCL‐g‐MA/TPS blends reinforced with 1 and 3 wt % of natural montmorillonite and two organo‐modified ones were prepared by melt intercalation followed by compression molding. The study was designed focusing on packaging applications. Grafting maleic anhydride onto PCL was efficient to improve PCL/TPS compatibility but did not modify matrix/nanoclay interaction. Matrix compatibilization and nanoclays increased the Youn?s modulus and slightly decreased the maximum stress of the TPS/PCL matrix. Nanoclay functionalization improved nanoclay dispersion in the blends but it was not reflected in mechanical properties improvements. The water adsorption of the compatibilized matrix was reduced after clay incorporation. A slight decrease in the biodegradation rate was observed with the addition of nanoclay. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44163.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号