共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在放缩过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法。该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测。同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择。在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测的性能,并降低了检测人脸的时间。 相似文献
3.
苏铁明程福运韩兆翠欧宗瑛 《数据采集与处理》2016,31(5):941-948
针对人脸姿态分类问题,本文提出了一种基于深度学习与融入梯度信息的人脸姿态分类学习方法。首先提取人脸姿态图像灰度与灰度差组合特征,然后通过三层受限玻尔兹曼机(Restricted Boltzmann machines,RBM)对大量样本的特征进行融合训练学习,提取反映人脸姿态内涵的深度学习特征。最后通过Softmax分类器建立深度学习特征与人脸姿态标签的对应关系。在对CAS-PEAL-R1人脸数据库进行学习和分类检测中,获得普遍高于95%的分类精度。 相似文献
4.
针对由于光照、分辨率、姿态和表情等因素变化引起的人脸检测准确性不高的问题和大多人脸检测算法使用单一的卷积神经网络去提取特征引起的算法的泛化能力变弱的问题,提出了三层由浅及深的级联的卷积神经网络结构。通过全卷积神经网络快速定位人脸候选区域,采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精度。同时通过加权降低得分改进常用的非极大值抑制的方法,解决了由于相邻人脸高度重叠引起的漏检问题。实验结果表明,该模型对上述引起人脸检测准确率不高的因素具有较好的鲁棒性,并且在FDDB数据集上有着较高的准确率和运行速度。改进后的非极大值抑制算法对在FDDB的测试准确率也有一定的提升。 相似文献
5.
6.
论文提出一种基于二级神经网络的人脸检测算法,先用第一级神经网络筛选出可能的人脸区域,然后将该区域进行不同角度旋转,送入第二级神经网络,根据网络的输出值确定人脸的倾斜角度,最后用验证策略进行判定是否为人脸。对各种图像进行实验的结果表明,该算法对于检测正面端正人脸有较好的效果和较强的鲁棒性,检测正面多角度的人脸也很有效。 相似文献
7.
人脸检测在日常生产和应用非常重要。本文提出了一种基于BP神经网络的AdaBoost人脸检测算法。首先,使用BP神经网络代替YCbCr高斯模型建立肤色模型。同时,针对AdaBoost算法提出了一种新的权值更新方法。在权值更新中引入阈值与样本之间的距离。另外权重有一个边界值。最后,利用BP神经网络提取图像中的肤色候选区域,并采用改进的AdaBoost算法对图像中的人脸进行精确检测。实验结果表明,利用BP神经网络和改进的AdaBoost算法的新的解决方案比现有的方法具有更高的精度。 相似文献
8.
基于肤色模型、神经网络和人脸结构模型的平面旋转人脸检测 总被引:26,自引:0,他引:26
人脸检测是智能人机接口的关键技术之一,它在人脸识别、表情识别、人脸合成和人脸编码等领域具有重要的应用价值.该文针对复杂背景下的彩色图像,提出了一种基于肤色模型、人脸平面旋转角度检测和正面人脸结构特征的人脸检测算法.该方法首先建立了一个人脸肤色分布模型;其次采用神经网络计算和瞳孔定位操作,实现了由粗到精的人脸平面旋转角检测;最后提出了一种基于结构的正面人脸检测策略.实验结果表明,所提出的算法能够适应不同的光照环境,可以检测不同大小、不同平面旋转角的人脸. 相似文献
9.
10.
基于深度学习的太阳能电池片表面缺陷检测方法 总被引:2,自引:0,他引:2
《模式识别与人工智能》2014,(6)
目前对太阳能电池片的缺陷检测仍依赖人工完成,很难通过传统的CCD成像系统自动识别.作为一种多层神经网络学习算法,深度学习因对输入样本数据强大的特征提取能力而受到广泛关注.文中提出一种基于深度学习的太阳能电池片表面缺陷检测方法,该方法首先根据样本特征建立深度置信网络(DBN),并训练获取网络的初始权值;然后通过BP算法微调网络参数,取得训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测.实验表明DBN能较好地建立上述映射关系,且准确、快速地进行缺陷检测. 相似文献
11.
受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variables)、Dropout方法和早期停止方法已被用于缓解过拟合问题.首先,改变RBM模型中的训练参数,使用随机变量代替传统的实值变量,构建了基于随机权值的受限的波尔兹曼机(weight uncertainty RBM,简称WRBM),接下来,在WRBM基础上构建了相应的深度模型:Weight uncertainty Deep Belief Network(WDBN)和Weight uncertainty Deep Boltzmann Machine(WDBM),并且通过实验验证了WDBN和WDBM的有效性.最后,为了更好地建模输入图像,引入基于条件高斯分布的RBM模型,构建了基于spike-and-slab RBM(ssRBM)的深度模型,并通过实验验证了模型的有效性. 相似文献
12.
13.
针对受限玻尔兹曼机(RBM)无监督训练存在特征同质化问题以及现有稀疏受限玻尔兹曼机(SRBM)难以自适应稀疏的缺陷,提出了一种基于竞争学习的RBM稀疏机制方法。首先设计基于神经元权值向量与输入向量间夹角余弦值的距离度量,评估两者相似度;然后在训练过程中对不同样本选择出基于距离度量的最优匹配隐单元;其次根据最优匹配隐单元激活状态计算对其他隐单元的稀疏惩罚度;最后执行参数更新并依据深度模型训练过程,将竞争稀疏应用于深度玻尔兹曼机(DBM)的构建中。通过手写数字识别实验证明,与误差平方和正则化因子相比,基于该稀疏机制的DBM分类准确率提高了0.74%,平均稀疏度提高了5.6%,且无需设置稀疏参数,因此,该稀疏机制可提高RBM等无监督训练模型的训练效率,并应用于深度模型的构建中。 相似文献
14.
基于深度学习的人体行为识别算法综述 总被引:10,自引:0,他引:10
人体行为识别和深度学习理论是智能视频分析领域的研究热点, 近年来得到了学术界及工程界的广泛重视, 是智能视频分析与理解、视频监控、人机交互等诸多领域的理论基础. 近年来, 被广泛关注的深度学习算法已经被成功运用于语音识别、图形识别等各个领域.深度学习理论在静态图像特征提取上取得了卓著成就, 并逐步推广至具有时间序列的视频行为识别研究中. 本文在回顾了基于时空兴趣点等传统行为识别方法的基础上, 对近年来提出的基于不同深度学习框架的人体行为识别新进展进行了逐一介绍和总结分析; 包括卷积神经网络(Convolution neural network, CNN)、独立子空间分析(Independent subspace analysis, ISA)、限制玻尔兹曼机(Restricted Boltzmann machine, RBM)以及递归神经网络(Recurrent neural network, RNN)及其在行为识别中的模型建立, 对模型性能、成果进展及各类方法的优缺点进行了分析和总结. 相似文献
15.
建立以受限玻尔兹曼机(restricted Boltzmann machine,简称RBM)为基石的深度网络模型,是深度学习研究的热点领域之一.Point-wise Gated受限玻尔兹曼机(point-wise gated RBM,简称pgRBM)是一种RBM的变种算法.该算法能够在含噪声的数据中自适应地找到数据中与分类有关的部分,从而实现较好的分类结果.假设一组数据中有噪声数据和干净数据,如何应用不含噪声的数据提升pgRBM的性能,是一个重要的研究问题.针对这一问题,首先,在传统的pgRBM基础上提出一种基于随机噪声数据与干净数据的Point-wise Gated受限玻尔兹曼机(pgRBM based on random noisy data and clean data,简称pgrncRBM)方法,其网络中与分类有关权值的初值是通过不含噪声的数据学习得到的,所以pgrncRBM在处理随机噪声数据时可以学习到更为干净的数据.在pgrncRBM中,与分类有关的数据与噪声都是使用RBM建模.如果噪声是图片,pgrncRBM就不能很好地去除噪声.Spike-and-Slab RBM(ssRBM)是一种处理实值数据的RBM变种模型,其定义两种不同类型的隐层用来学习实值数据的分布特性.因此,将ssRBM与pgRBM相结合,提出一种基于图像噪声数据与干净数据的Point-wise Gated受限玻尔兹曼机(pgRBM based on image noisy data and clean data,简称pgincRBM)方法.该方法使用ssRBM对噪声建模,其在处理图像噪声数据时可以学习到更为干净的数据.然后,通过堆叠pgrncRBM、pgincRBM和传统的RBM构建出深度网络模型,并探讨了权值不确定性方法在提出网络模型中的可行性.最后,在含噪声的手写数据集上进行MATLAB仿真实验.实验结果表明,pgrncRBM和pgincRBM都是有效的神经网络学习方法. 相似文献
16.
面向用户生成内容(User generated content, UGC)的进化搜索在大数据及个性化服务领域已引起广泛关注, 其关键在于基于多源异构用户生成内容构建用户认知偏好模型, 进而设计高效的进化搜索机制. 针对此, 提出融合注意力机制(Attention mechanism, AM)的受限玻尔兹曼机(Restricted Boltzmann machine, RBM)偏好认知代理模型构建机制, 并应用于交互式分布估计算法(Interactive estimation of distribution algorithm, IEDA), 设计含用户生成内容的个性化进化搜索策略. 基于用户群体提供的文本评论, 以及搜索物品的类别文本, 构建无监督受限玻尔兹曼机模型提取广义特征; 设计注意力机制, 融合广义特征, 获取对用户认知偏好高度相关特征的集成; 利用该特征再次训练受限玻尔兹曼机, 实现对用户偏好认知代理模型的构建; 根据用户偏好认知代理模型, 给出交互式分布估计算法概率更新模型以及物品适应度评价函数, 实现物品个性化进化搜索. 算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性, 以及个性化进化搜索的有效性. 相似文献
17.
由于工业生产中所获取的焊缝缺陷图像背景较为复杂,对其分类识别效率较低,因此提出了一个由三层受限玻尔兹曼机叠加组成的深度置信网络模型.该网络模型在对焊缝原始图像进行更为全面的信息抽取前提下,能够借助深度置信网络自下而上对输入信息进行学习与训练的特点,逐渐减少对焊缝缺陷信息的误判;借助网络最后一层后向传播算法的作用,可以在确保更高正确率的同时缩短收敛时间,有效提升识别效率;通过与传统的支持向量机和人工神经网络进行对比实验,结果表明深度置信网络能更为有效地避免过拟合的发生,对于焊缝缺陷的特征识别具有更为理想的精度. 相似文献
18.
目的 尽管基于深度神经网络的人脸检测器在检测精度上有了极大的提升,但其代价是必须依赖强大的计算资源。如何在CPU上取得较高的检测精度的同时达到实时的检测速度是一个巨大的挑战。针对非约束性条件下的快速鲁棒的人脸检测问题,提出一种基于轻量级神经网络的检测方法。方法 受轻量级网络MobileNet的启发,本文算法采用通道分离的卷积方式进行特征提取,并结合Inception和残差连接的思想,构建若干特征提取模块,最终训练出一个简单高效的特征提取网络;在检测时,采用One-Stage的检测策略,在骨干网络的若干不同层级上使用卷积的同时进行目标区域的分类和定位;在进行目标区域精调时,需要先在对应的特征层上预设先验框,然后再使用边界框回归算法调整先验框的位置和大小,使之接近真实框的位置。为了减少先验框的数量以节省模型参数,本算法针对人脸目标框的特点设置先验框。结果 基于TensorFlow深度学习库构建和训练本文的检测模型,在FDDB数据集上对其进行测试,并与若干经典算法对比了检测速度和精度。相较于多任务级联卷积网络(MTCNN)等典型的深度学习方法,本文算法在CPU上将检测速度提升到25帧/s,同时平均精度(mAP)保持在0.892,高于大多数传统算法。实验结果表明本文方法能实现在CPU上的实时、高精度检测。结论 提出了一种基于轻量级网络模型的人脸检测方法,以简单高效的卷积模块为基础构建骨干网络,并在检测时针对人脸比例特征设置合理的先验框。在非约束性条件以及有限计算资源条件下,该方法不仅在精度上表现良好,而且具有较快的检测速度,是一种鲁棒的检测方法。 相似文献
19.
Boltzmann机是一种应用广泛的随机神经网络。它通过模拟退火算法进行网络学习,能取得一个全局或接近全局最优的最优值;通过期望网络模式和实际学习得到的网络模式比较来调节网络的权值,使网络能尽可能地达到或逼近期望的网络模式。将遗传算法运用到Boltzmann机的网络学习中,在对BM机编码后,通过选择、交叉和变异等遗传操作算子对网络进行训练,调整网络的权值,使适应度函数值大的网络保留下来,最终使网络达到期望的模式。通过实例验证,这是一种简单可行的调节网络权值的方法。 相似文献
20.
如何对海量的网络媒体大数据进行准确地目标识别,是当前的一个研究热点和难点.针对此问题提出一种利用媒体流时间相关特性的异构多模态目标识别策略.首先基于媒体流中同时存在音频和视频信息的特征,建立一种异构多模态深度学习结构;结合卷积神经网络(convolutional neural network, CNN)和限制波尔兹曼机(restricted Boltzmann machine, RBM)的算法优点,对音频信息和视频信息分别并行处理,这种异构模式可以充分利用不同深度神经网络的特点;然后生成基于典型关联分析的共享特征表示,并进一步利用时间相关特性进行参数的优化.3种对比实验用来验证所提策略的效果,首先将策略与单一模态算法进行对比;然后再在复合的数据库上建立对比实验;最后在网络视频库上建立对比实验,这些对比实验验证了策略的有效性. 相似文献