首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
三次采油技术中使用的部分水解聚丙烯酰胺(HPAM)在高温高盐条件下会发生明显的水解和降解反应,抗温抗盐性能较差。疏水缔合聚合物凭借聚合物分子间缔合作用形成的大分子网状结构使其抗盐性有所改善,从而弥补了HPAM抗盐性差的缺陷。然而,疏水缔合聚合物存在其分子线团尺寸与油藏多孔介质孔隙尺寸间适应性差的问题,导致疏水缔合聚合物注入困难。针对疏水缔合聚合物与油藏适应性较差的问题,采用β-环糊精(β-CD)为疏水缔合聚合物缔合程度调节剂,通过室内岩心驱替实验方法,开展了β-CD对疏水缔合聚合物传输运移特性影响的研究。结果表明,β-CD可以改变AP-P4的缔合作用及在多孔介质中的行为。在浓度为1 g/L的疏水缔合聚合物AP-P4溶液中加入β-CD后,溶液黏度随β-CD加量的增加而减小,当β-CD加量达到0.07%时,AP-P4溶液黏度最低(26.2 m Pa·s),为本体黏度,难以发生缔合作用。同时,随着β-CD加量的增大,AP-P4分子链间缔合作用减弱,聚合物分子线团尺寸减小。随着β-CD加量的增大,在岩心渗透率相同(相近)条件下,AP-P4溶液的阻力系数和残余阻力系数减小,疏水缔合聚合物溶液在岩心内的传输运移能力增强。  相似文献   

2.
为改善大港油田孔南地区油藏疏水缔合聚合物/表面活性剂二元体系的液流转向能力,获得良好的增油效果,研究了聚合物和表面活性剂浓度、岩心渗透率和注入水除垢对疏水缔合聚合物溶液和疏水缔合聚合物/表面活性剂二元复合体系黏度和渗流特性的影响。结果表明,聚合物溶液和二元复合体系的黏度随聚合物浓度的增 加而增加,疏水缔合聚合物临界缔合浓度为1~2 g/L;在疏水缔合聚合物溶液中加入少量表面活性剂可以增强体系中疏水缔合聚合物疏水基团间的缔合作用,使黏度和渗流阻力增加;岩心渗透率越高,二元体系的阻力系数和残余阻力系数越低;用除垢软化水配制聚合物溶液和聚合物/表面活性剂二元体系的黏度最大,且聚合物浓度越小,软化水对其增黏效果越明显;用含垢软化水配制聚合物溶液和聚合物/表面活性剂二元体系的阻力系数和残余阻力系数最大、注入压力最高,液流转向效果最好。图4 表5 参16  相似文献   

3.
为揭示疏水缔合聚合物结构与性能的关系,采用稳态应力扫描、剪切速率扫描、频率扫描等流变性实验方法,研究了疏水缔合聚合物(丙烯酰胺、丙烯酸钠和十二烷基丙烯酰胺共聚物,疏水单体十二烷基丙烯酰胺含量0.2 mol%)的微嵌段长度(NH)对其流变性能的影响规律。研究结果表明:随着微嵌段长度的增加,聚合物的缔合效应加强,更易于形成可逆空间网络结构;同时其临界缔合浓度(CAC)逐渐降低,会使其增黏能力、黏弹性能均有很大提升;当NH 从3.3 增至12.5 时,CAC 从1684 mg/L 降为846 mg/L,零剪切黏度从204.73 mPa·s 增至65833.19 mPa·s,松弛时间从0.07 s 增至12.64 s。流变实验结果表明,疏水缔合聚合物的缔合与解缔合是一个可逆的动态过程,微嵌段长度越长,经剪切作用破坏后的结构黏度重新恢复速度越慢,但其恢复后的黏度越高。在一定范围内升高温度和增加溶液离子强度有利于增强缔合效应,从而促使疏水缔合聚合物的抗温、抗盐性能在一定程度上提高。图8表1 参33  相似文献   

4.
以疏水缔合聚合物为代表的抗盐型聚合物在油田提高采收率实践中获得了良好增油降水效果。但是矿场实践中往往只重视聚合物溶液视黏度,而忽视聚合物溶液中聚合物分子聚集体与储层孔隙和非均质性间的匹配关系。以SZ36-1油田储层地质特征和流体为研究对象,开展了疏水缔合聚合物缔合程度及其调节方法研究,在此基础上进行了储层非均质性与疏水缔合聚合物缔合程度适应性评价。结果表明,在浓度为1750 mg/L的AP-P4溶液中加入β-环糊精(β-CD),β-CD加量由0增至0.08%时,β-CD/AP-P4体系的黏度由172.1 m Pa·s降至7.7 m Pa·s,聚合物分子线团尺寸由1078.2 nm减至500.1 nm,与之相适应的岩心渗透率极限由1500×10-3μm2降至150×10-3μm2。由此可见,加入β-CD可以调节疏水缔合聚合物溶液中超分子聚集体尺寸及其大小分布,进而改善其与储层岩石孔喉间匹配关系。岩心非均质性不同,与之相适应疏水缔合聚合物缔合程度也不同。只有驱油剂体系与岩心孔喉相匹配时,采收率增幅才能达到最大。  相似文献   

5.
针对鲁克沁中区油藏非均质性严重、水油流度比大和地层水矿化度高的特点,研究了疏水缔合聚合物AP-P8在该油藏条件下的黏度、溶解性、抗剪切性和热稳定性,考察了AP-P8的驱油性能,并在现场进行了应用。研究结果表明,配液水为注入水(矿化度约80 g/L)、温度为78℃时,AP-P8的增黏性能明显好于常规聚合物,AP-P8溶液黏度随温度升高而降低,用注入水配制的2 g/L AP-P8溶液在100℃时的黏度为64.5 mPa·s;室温下AP-P8在注入水中的溶解性较好,溶解时间为2.8 h;AP-P8抗剪切性较好,2.5 g/L AP-P8溶液剪切后的黏度保留率为54.2%。随AP-P8浓度的增加,岩心阻力系数和残余阻力系数增加,有利于提高原油的采收率;AP-P8可在水驱基础上提高稠油采收率10.2%;现场试注试验结果表明,AP-P8的注入性良好,常温配液黏度为100 mPa·s,注聚稳定压力27.5 MPa。AP-P8满足鲁克沁中区油藏条件对聚合物驱性能的要求,应用时可以直接用注入水配液。  相似文献   

6.
针对高温高盐的中原油田,考察了石油磺酸盐MJ2和DQ分别与M=2.4×107的HPAM Y2、疏水基含量0.25%的疏水缔合聚合物AP-P5组成的4个表聚二元体系98℃下的界面张力、表观黏度、耐盐性和热稳定性.配液用水为矿化度122.4 g/L、含钙镁的胡12块产出水,在考察耐盐性时使用NaCl盐水,基础实验体系含石油磺酸盐3.0 g/L,含聚合物1.5 g/L.含MJ2的表聚二元体系与胡12块原油间的界面张力在含盐量30~210 g/L时维持10-3~10-4mN/m超低值,受含盐量的影响相对较小,动态界面张力迅速达到稳定.含Y2的表聚二元体系即使Y2浓度增至2.5 g/L,黏度仍小于10 mPa·s.含AP-P5的表聚二元体系在温度超过60℃后,黏度快速上升,在AP-P5浓度超过1.0 g/L后,98℃黏度快速上升,含盐量达到230 g/L时为54~59 mPa·s.3.0 g/L MJ2 1.5 g/L AP-P5体系为最佳体系,在98℃老化150天过程中界面张力波动小,150天后黏度31.3 mPa·s.在98℃用此体系在天然岩心上驱油,注入段塞体积为0.25~0.30 PV,采收率提高值为14.3%~15.8%.图8表3参2.  相似文献   

7.
根据形成的CDG黏度(60℃),M=1.0×106、HD=25%、疏水基含量0.25%的疏水缔合聚合物AP-P4与柠檬酸铝在矿化度44.8 g/L的模拟地层盐水中在60℃下形成CDG的条件为:聚合物浓度100~300 mg/L,聚交比20~150,最佳聚交比100,成胶时间2~7天;聚合物浓度≥400 mg/L时发生分子间交联.在Ka为0.2~1.0 μm2的人造砂岩岩心中,聚合物浓度300 mg/L的AP-P4型CDG产生的阻力系数为59.01~23.89,残余阻力系数为43.28~15.96,而相应的HPAM型CDG则分别为41.67~18.63和30.58~9.03;在Kw为0.20~0.23 μm2的人造岩心中,AP-P4型和HPAM型CDG的最高封堵率分别为94%和78%.在渗透率级差分别为12.72和4.65的两组并联双岩心组上,水驱后注入0.5 PV AP-P4型CDG使采收率分别提高16.0%和13.8%.在高盐条件下疏水缔合聚合物CDG的调驱性能优于HPAM型CDG.图3表3参3.  相似文献   

8.
为深入探索疏水缔合聚合物驱油机理,开展了疏水缔合聚合物溶液渗流特性及其影响凶素研究。结果表明:疏水缔合聚合物分子链上含有少量疏水基团,它们在溶剂水中可以发生缔合作用,形成胶束纳米结构——超分子网络结构,进而拥有独特渗流特性;疏水缔合聚合物溶液通过岩心孔隙时会受到剪切作用,造成聚合物分子链断裂即分子聚集体破损,其破损程度与注液速度、岩心孔喉尺寸、矿物组成和分子聚集体尺寸有关;聚合物分子聚集体尺寸大小影响着聚合物滞留量,并最终决定了注入压力、阻力系数和残余阻力系数大小;因为β-环糊精具有抑制疏水基团间的缔合和减小聚合物分子线团尺寸D_h功效,所以β-环糊精宏观上可以扩大疏水缔合聚合物溶液波及体积,微观上可以减小不可及孔隙体积,进而改善聚驱增油降水效果。  相似文献   

9.
赵庆美  赵林  汤琪  马超 《油田化学》2016,33(4):596-600
为提高疏水缔合聚丙烯酰胺的性能, 以 1H, 1H, 2H, 2H-十七氟癸烷丙烯酸酯 (HFA) 为疏水单体, 以丙烯酰胺 (AM)、 丙烯酸 (AA) 为水溶性单体, 采用胶束聚合法合成了含氟疏水缔合聚丙烯酰胺 (FAPAM)。用红外光谱仪对产物结构进行了表征, 研究了 AA和 HFA加量对 FAPAM表观黏度和相对分子质量的影响, 考察了 FAPAM的耐温性、 抗剪切性、 抗盐性及交联性。研究结果表明, FAPAM为 AM、 AA、 HFA的三元共聚物; AA和 HFA加量分别为单体总质量的 30%数 40%和 0.5%时, 合成的 FAPAM的表观黏度 (3376.7 mPa·s) 最大。FAPAM的耐温性较好, 在 110℃下放置 1 h后的表观黏度大于 100 mPa· s; FAPAM的抗剪切性较好, 在 300 r/min下剪切 48 h的表观黏度大于 500 mPa·s; 在 Na+或 Ca2+质量浓度为 0.5 g/L时, FAPAM的表观黏度大于 50 mPa·s, 抗盐性好于 PAM(HFA加量为 0); 在 30℃下, FAPAM可与有机铬快速交联。FAPAM的耐温性、 抗盐性和耐剪切性均优于 PAM,可以作为压裂液稠化剂使用。图 6表 3参 15  相似文献   

10.
注入速度对疏水缔合聚合物剪切后恢复性能的影响   总被引:2,自引:0,他引:2  
张瑞  秦妮  彭林  胡冰艳  叶仲斌 《石油学报》2013,34(1):122-127
针对渤海绥中36-1油田的实际油藏地层条件模拟设计了近井地带模型。研究了注入速度分别为5m3/(m·d)、10m3/(m·d)和20m3/(m·d)时,部分水解聚丙烯酰胺与疏水缔合聚合物2种不同分子结构的聚合物剪切后溶液性能恢复过程。实验结果表明,部分水解聚丙烯酰胺溶液的黏度、阻力系数、残余阻力系数等不能恢复,而疏水缔合溶液经高速剪切后溶液性能可以恢复。在注入速度为5m3/(m·d)时,疏水缔合聚合物在近井地带最终黏度保留率为92.3,阻力系数保留率为43.7,残余阻力系数保留率为81.1,且随着注入速度增大,溶液的黏度、阻力系数、残余阻力系数降低。在注入速度为10m3/(m·d)时,黏度、阻力系数、残余阻力系数保留率分别为70.6、35.2、72.7。注入速度为20m3/(m·d)时,黏度、阻力系数、残余阻力系数保留率分别为55.6、26.3、55.8。利用原子力显微镜观察剪切后疏水缔合聚合物微观形态认为,疏水基团的缔合作用使得原本被高速剪切破坏的溶液网络结构重新生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号