首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE) is a cis-acting RNA element located in the 3' untranslated region (UTR) of the viral genome. The HIV-1 and SIV Rev/RRE regulatory system can be replaced with MPMV CTE (Bray et al., 1994; Zolotukhin et al., 1994; Rizvi et al., 1996a); similarly, CTE function can also be replaced by the HIV or SIV Rev/RRE regulatory system (Rizvi et al., 1996b; Ernst et al., 1997). In addition, we have shown that in the context of the SIV genome, position is important for CTE function (Rizvi et al., 1996a). To determine the importance of position for CTE function in the context of the MPMV genome, MPMV molecular clones were generated by deleting CTE or removing it from the 3' UTR and placing it in the approximately 40 bp of intervening sequences between the pol termination codon and env initiation codon. A test of these molecular clones in a single round of replication assay revealed that deletion or displacement of CTE in the intervening sequences between pol and env completely abrogated virus replication. Western blot analysis of cell lysates and pelleted culture supernatants revealed negligible amounts of Pr78 Gag/Pol precursor and the processed p27(gag) when CTE was deleted or displaced. Slot blot analysis of fractionated RNAs revealed entrapment of the viral Gag/Pol mRNA in the nucleus with CTE deletion or displacement. Upon reinsertion of CTE in the original genomic position of clones with the deleted or displaced CTE, virus replication, Gag/Pol protein production, and nucleocytoplasmic transport of viral mRNA were restored to normal levels. Displacement of CTE to the 5' UTR immediately upstream of the Gag initiation codon also resulted in aberrant Gag/Pol protein production and nucleocytoplasmic transport of viral RNA. Reinsertion of CTE at the original genomic position of the clone with CTE displacement at the 5' UTR restored normal Gag/Pol protein production and RNA transport, demonstrating that the 3' terminal position of CTE is important for its function. To explore why the 3' terminal location of CTE is important, heterologous DNA sequences of increasing lengths were inserted between CTE and the polyadenylation (poly(A)) signal of the virus to augment the distance between the two cis-acting elements. Test of these constructs revealed that CTE function was progressively lost with incremental increase in distance between CTE and poly(A). To explore this relationship further, CTE was displaced to the env region approximately 2000 bp upstream of the poly(A) signal which abrogated CTE function. However, cloning of poly(A) signal to approximately 200 bp downstream of CTE in the env region (the natural distance between CTE and poly(A)) restored CTE function. Together, these results demonstrate that the close proximity of CTE to the poly(A) signal is important for CTE function, suggesting a functional interaction between CTE and the polyadenylation machinery.  相似文献   

2.
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.  相似文献   

3.
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.  相似文献   

4.
Recently, it was shown that actin molecules are present in human immunodeficiency virus type 1 (HIV-1) particles. We have examined the basis for incorporation and the location of actin molecules within HIV-1 and murine retrovirus particles. Our results show that the retroviral Gag polyprotein is sufficient for actin uptake. Immunolabeling studies demonstrate that actin molecules localize to a specific radial position within the immature particle, clearly displaced from the matrix domain underneath the viral membrane but in proximity to the nucleocapsid (NC) domain of the Gag polyprotein. When virus or subviral Gag particles were disrupted with nonionic detergent, actin molecules remained associated with the disrupted particles. Actin molecules remained in a stable complex with the NC cleavage product (or an NC-RNA complex) after treatment of the disrupted HIV-1 particles with recombinant HIV-1 protease. In contrast, matrix and capsid molecules were released. The same result was obtained when mature HIV-1 particles were disrupted with detergent. Taken together, these results indicate that actin molecules are associated with the NC domain of the viral polyprotein.  相似文献   

5.
Retroviruses are produced as immature particles containing structural polyproteins, which are subsequently cleaved by the viral proteinase (PR). Extracellular maturation leads to condensation of the spherical core to a capsid shell formed by the capsid (CA) protein, which encases the genomic RNA complexed with nucleocapsid (NC) proteins. CA and NC are separated by a short spacer peptide (spacer peptide 1 [SP1]) on the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein and released by sequential PR-mediated cleavages. To assess the role of individual cleavages in maturation, we constructed point mutations abolishing cleavage at these sites, either alone or in combination. When all three sites between CA and NC were mutated, immature particles containing stable CA-NC were observed, with no apparent effect on other cleavages. Delayed maturation with irregular morphology of the ribonucleoprotein core was observed when cleavage of SP1 from NC was prevented. Blocking the release of SP1 from CA, on the other hand, yielded normal condensation of the ribonucleoprotein core but prevented capsid condensation. A thin, electron-dense layer near the viral membrane was observed in this case, and mutant capsids were significantly less stable against detergent treatment than wild-type HIV-1. We suggest that HIV maturation is a sequential process controlled by the rate of cleavage at individual sites. Initial rapid cleavage at the C terminus of SP1 releases the RNA-binding NC protein and leads to condensation of the ribonucleoprotein core. Subsequently, CA is separated from the membrane by cleavage between the matrix protein and CA, and late release of SP1 from CA is required for capsid condensation.  相似文献   

6.
Cerebral palsy (CP) is classified as a static encephalopathy. CP is a nonprogressive disorder affecting posture and movement and is commonly associated with a spectrum of developmental disabilities. Serial testing of physiological function can provide a quantitative assessment of improvement or decline in the condition of the patient. Furthermore, there are increasing numbers of children with disability who are involved in athletic activity, and the need for physiological feedback to the disabled athlete and coach is the same as for able-bodied individuals. It is acknowledged that children and adolescents with CP have a lower maximal oxygen consumption (VO2max) compared with their able-bodied peers. Children with CP also have distinctly subnormal values for peak anaerobic power and muscular endurance of the upper and lower limbs. Irrespective of the scaling method used (absolute or relative), when compared with normal data from healthy controls, children with CP scored between 2 and 4 standard deviations below the expected mean value for power. Gait abnormalities in children with CP have been shown to increase submaximal walking energy expenditure almost 3-fold compared with healthy children. Assessment of the metabolic cost alone is important but does not provide any information on the mechanisms giving rise to the high energy cost of locomotion in children with CP. Hence, a multidisciplinary (kinetic, kinematic and electromyographic) approach is an important noninvasive tool for studying some of the underlying mechanisms responsible for abnormal gait and elevated energy costs. A certain level of muscle co-contraction is necessary for achieving joint stability during locomotion, particularly at the ankle and knee. There appears, however, to be a co-contraction threshold beyond which there are associated elevated metabolic costs during locomotion in children with CP.  相似文献   

7.
The entry of retroviruses into cells depends on receptor recognition by the viral envelope surface subunit SU followed by membrane fusion, which is thought to be mediated by a fusion peptide located at the amino terminus of the envelope transmembrane subunit TM. Several fusion determinants have been previously identified in murine leukemia virus (MLV) envelopes, but their functional interrelationships as well as the processes involved in fusion activation upon retroviral receptor recognition remain unelucidated. Despite both structural and functional similarities of their envelope glycoproteins, ecotropic and amphotropic MLVs display two different postbinding properties: (i) while amphotropic MLVs fuse the cells at neutral pH, penetration of ecotropic MLVs is relatively acid pH dependent and (ii) ecotropic envelopes are more efficient than amphotropic envelopes in inducing cell-to-cell fusion and syncytium formation. By exploiting the latter characteristic in the analysis of chimeras of ecotropic and amphotropic MLV envelopes, we show here that substitution of the ecotropic MLV proline-rich region (PRR), located in the SU between the amino-terminal receptor binding domain and the TM-interacting SU carboxy-terminal domains, is sufficient to revert the amphotropic low-fusogenic phenotype into a high-fusogenic one. Furthermore, we have identified potential beta-turns in the PRR that control the stability of SU-TM associations as well as the thresholds required to trigger either cell-to-cell or virus-to-cell fusion. These data, demonstrating that the PRR functions as a signal which induces envelope conformational changes leading to fusion, have enabled us to derive envelopes which can infect cells harboring low levels of available amphotropic receptors.  相似文献   

8.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates moesin at Thr558 in vitro. Here, using a site- and phosphorylation state-specific antibody, we found that the expression of dominant active RhoA in COS7 cells induced moesin phosphorylation and the formation of microvilli-like structures at apical membranes where the Thr558-phosphorylated moesin accumulated, whereas the expression of dominant negative Rho-kinase inhibited both of these processes. The expression of dominant active Rho-kinase also induced moesin phosphorylation. When COS7 cells expressing moesin or moesinT558A (substitution of Thr by Ala) were cultured under serum-depleted conditions, there were few microvilli-like structures, whereas microvilli-like structures remained in the cells expressing moesinT558D (substitution of Thr by Asp). The expression of moesinT558A inhibited the dominant active RhoA-induced formation of microvilli-like structures. These results indicate that Rho-kinase regulates moesin phosphorylation downstream of Rho in vivo and that the phosphorylation of moesin by Rho-kinase plays a crucial role in the formation of microvilli-like structures.  相似文献   

9.
Limited data exist regarding morphogenesis and differentiation during liver regeneration. We examined the role of epimorphin on liver regeneration. After 70% partial hepatectomy, mouse liver was collected on days 1, 3, 7, and 14 for immunohistochemistry and the detection of epimorphin mRNA and connexin 32. Using primary cultured rat hepatocytes, morphogenesis and differentiation of cells were tested with or without epimorphin. Seven days after cell inoculation, the expression of connexin 32 and the cell-cell communication was tested as a marker of differentiation. Epimorphin was detected exclusively in hepatic stellate cells. Connexin 32 was detected only in hepatocytes. After partial hepatectomy, epimorphin mRNA was detected on day 3 and peaked at day 7, followed by protein expression. Connexin 32 expression showed a similar time course. Cultured hepatocytes formed multicellular spheroids in an active epimorphin-coated culture dish and showed positive dye coupling, whereas the cell-cell communication was lost without active epimorphin. Because epimorphin was expressed late in liver regeneration, it might play a role in morphogenesis and differentiation.  相似文献   

10.
The drill monkey has been shown by serology and PCR to harbor a unique simian immunodeficiency virus (SIVdrl). A pol sequence, amplified from uncultured peripheral blood cells, is most closely related to the equivalent SIV sequences from the red-capped mangabey (SIVrcm), the sabaeus African green monkey (SIVagmSAB), and the chimpanzee (SIVcpz) and to the human immunodeficiency virus type 1 (HIV-1) sequence of humans. It is as yet unclear whether SIVdrl has a mosaic genome like SIVrcm and SIVagmSAB, is a member of the SIVcpz/HIV-1 lineage, or represents a novel primate lentivirus lineage.  相似文献   

11.
The hypothesis that the cellular protein Crm1 mediates human immunodeficiency virus type 1 (HIV-1) Rev-dependent nuclear export posits that Crm1 can directly interact both with the Rev nuclear export signal (NES) and with cellular nucleoporins. Here, we demonstrate that Crm1 is indeed able to interact with active but not defective forms of the HIV-1 Rev NES and of NESs found in other retroviral nuclear export factors. In addition, we demonstrate that Crm1 can bind the Rev NES when Rev is assembled onto the Rev response element RNA target and that Crm1, like Rev, is a nucleocytoplasmic shuttle protein. Crm1 also specifically binds the Rev NES in vitro, although this latter interaction is detectable only in the presence of added Ran . GTP. Overexpression of a truncated, defective form of the nucleoporin Nup214/CAN, termed DeltaCAN, that retains Crm1 binding ability resulted in the effective inhibition of HIV-1 Rev or human T-cell leukemia virus Rex-dependent gene expression. In contrast, DeltaCAN had no significant affect on Mason-Pfizer monkey virus constitutive transport element (MPMV CTE)-dependent nuclear RNA export or on the expression of RNAs dependent on the cellular mRNA export pathway. As a result, DeltaCAN specifically blocked late, but not early, HIV-1 gene expression in HIV-1-infected cells. These data strongly validate Crm1 as a cellular cofactor for HIV-1 Rev and demonstrate that the MPMV CTE nuclear RNA export pathway uses a distinct, Crm1-independent mechanism. In addition, these data identify a novel and highly potent inhibitor of leucine-rich NES-dependent nuclear export.  相似文献   

12.
Maturation of infectious human immunodeficiency virus (HIV) particles requires proteolytic cleavage of the structural polyproteins by the viral proteinase (PR), which is itself encoded as part of the Gag-Pol polyprotein. Expression of truncated PR-containing sequences in heterologous systems has mostly led to the autocatalytic release of an 11-kDa species of PR which is capable of processing all known cleavage sites on the viral precursor proteins. Relatively little is known about cleavages within the nascent virus particle, on the other hand, and controversial results concerning the active PR species inside the virion and the relative activities of extended PR species have been reported. Here, we report that HIV type 1 (HIV-1) particles of four different strains obtained from different cell lines contain an 11-kDa PR, with no extended PR proteins detectable. Furthermore, mutation of the N-terminal PR cleavage site leading to production of an N-terminally extended 17-kDa PR species caused a severe defect in Gag polyprotein processing and a complete loss of viral infectivity. We conclude that N-terminal release of PR from the HIV-1 polyprotein is essential for viral replication and suggest that extended versions of PR may have a transient function in the proteolytic cascade.  相似文献   

13.
Rous sarcoma virus (RSV) contains two approximately 135-nt imperfect direct repeats composed of smaller repeats, dr1 (approximately 100 nt) and dr2 (approximately 36 nt), that are between the env and src genes and downstream of src in the 3' untranslated region, respectively. It has previously been shown that a Prague A RSV mutant in which both dr1 sequences are deleted is defective at several points in the virus life cycle, including unspliced RNA and env mRNA stability, unspliced RNA transport, and virus particle assembly. A defect in unspliced RNA transport occurs because a cytoplasmic transport element is present within the dr1. We have suggested that the defect of particle production may arise from the failure of the unspliced RNA to be targeted to sites in the cytoplasm where its translation is favorable for Gag protein assembly. In this report, we have further investigated the function of the direct repeats by comparing virus mutants containing either a single upstream or downstream dr1 sequence. Both mutants were delayed in replication compared to the wild-type; the mutant with a single upstream dr1 (delta DDR) is significantly more defective than the mutant with a single downstream dr1 (delta UDR). While both mutants appear capable of efficiently transporting unspliced RNA to the cytoplasm, the delta DDR mutant with only the upstream dr1 is defective in its ability to support Gag assembly and particle release. The replication defect cannot be repaired by placing the upstream dr1 at the location of the downstream dr1 in the 3' untranslated region. A single point mutation in the upstream dr1 (U to C) restored replication and particle production to near normal levels. The results suggest that unspliced RNA transport and Gag assembly functions may be mediated by different elements within the dr1 and that the Prague A upstream dr1 is defective in the latter but not the former function.  相似文献   

14.
The complete nucleotide sequence of maize dwarf mosaic virus Bulgarian isolate (MDMV-Bg) was determined. The viral genome was 9515 nt and contained an open reading frame encoding 3042 amino acids, flanked by 3'- and 5'-UTRs of 139 and 250 nucleotides, respectively. MDMV-Bg was more conserved in the coding region (52.9%) than in the UTRs (45.8%) when compared to the 15 other potyviruses. Of ten putative gene products of MDMV-Bg, the P1 was the most variable protein (24.9%) while the NIb was the most conserved protein (67.3%). Several sequence variations were observed between MDMV-Bg and Johnson grass mosaic virus (JGMV), and more between MDMV-Bg and the dicot potyviruses. Phylogenetic analysis suggested that MDMV-Bg was the most closely related to JGMV.  相似文献   

15.
Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.  相似文献   

16.
17.
18.
Human immunodeficiency virus type 1 (HIV-1) replication requires coordinated activities of host and viral factors. We reported previously that interactions of the host factor cyclophilin A with HIV-1 Gag polyproteins affected Gag processing and maturation of virus particles (Streblow et al., 1998. Virology 245, 197-202). We now use in vitro translation and physical analysis of Gag structures to refine our understanding of how cyclophilin A affects HIV-1 replication. Gag assembled into oligomeric structures in vitro in the presence or absence of cyclophilin A, and proteins synthesized under the two conditions were equally susceptible to cleavage by exogenous HIV-1 protease. These and previous data show that Cyclophilin A is required at a step between Gag assembly and Gag processing/virion morphogenesis. Cyclophilin A may be required for Gag conformational changes subsequent to assembly, that are required for efficient dimerization and activation of the viral protease.  相似文献   

19.
Activation of the atrial natriuretic peptide (ANP) gene is regarded as one of the earliest and most reliable markers of hypertrophy in the ventricular cardiac myocyte. We have examined the role of the nonreceptor tyrosine kinases in the signaling mechanism(s) leading to hypertrophy using human ANP gene promoter activity as a marker. Endothelin (ET), a well known hypertrophic agonist, increased activity of c-Src, c-Yes, and Fyn within minutes and promoted a selective redistribution of each of these kinases within the cell. Overexpression of c-Src effected a significant increase in activity of a cotransfected human ANP promoter-driven chloramphenicol acetyl transferase reporter, while expression of either c-Yes or Fyn was considerably less effective in this regard. ET-dependent stimulation of the human ANP gene promoter was partially inhibited by co-transfection with dominant negative Ras or dominant negative Src or Csk or by treatment with the potent Src family-selective tyrosine kinase inhibitor PP1, suggesting that the Src family kinases are involved in signaling ET-dependent activation of this promoter. Both ET- and Src-dependent activation of the ANP promoter required the presence of a CArG motif in a serum response element-like structure between -422 and -413 but did not appear to require assembly of a ternary complex for full activity. These findings support a role for Src in the activation of ANP gene expression and suggest that this kinase may contribute in an important way to the signaling mechanisms that activate hypertrophy in the cardiac myocyte.  相似文献   

20.
A captive-born rhesus monkey (Macaca mulatta) experimentally infected with simian immunodeficiency virus developed neurologic abnormalities approximately seven months postinoculation. A chronic necrotizing encephalomyelitis with intralesional protozoal schizonts was diagnosed histologically. The protozoa was identified as Sarcocystis neurona based on its morphologic characteristics by light and electron microscopic examination, the developmental stages of the schizonts, and positive staining with antisera against Sarcocystis cruzi by immunocytochemical techniques. Although S. neurona may be confused with Toxoplasma gondii by light microscopy, the former lacks rhoptries, is in direct contact with the host cell cytoplasm, and divides by endopolygeny. Sarcocystis neurona has recently been identified as an etiologic agent of encephalomyelitis in horses, raccoons, and mink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号