首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a field experiment on a deep pale-yellow sand in a 600 mm per annum rainfall Mediterranean environment of south-western Australia, six levels of phosphorus (P) as superphosphate (O up to 546 kg P ha–1) were applied once only, to the soil surface, before sowing lupins (Lupinus angustifolius). The lupins were grown in a continuous arable cropping rotation with, in successive years, oats (Avena sativa), wheat (Triticum aestivum), lupins. Five such rotations were started in the experiment from 1985 to 1989. The experiment continued until the end of 1990.The relationship between lupin seed (grain) yields and the level of P applied was measured in the year of P application for five successive years (1985 to 1989). The relationship had the same general form but it varied between years, largely due to different maximum yields (yield plateaux) in each year.The residual value of superphosphate applied three years previously was measured for lupins on two occasions (1988 and 1989) relative to superphosphate applied in the current year. The residual values was different in the two years. The superphosphate applied three years previously was about 30% as effective as freshly applied superphosphate in 1988, and 12% as effective in 1989.At each harvest, the relationship between grain yield and the P concentration in the grain differed for different species. However, for each species at each harvest, the relationship was similar regardless of when the P was applied in the previous years. Thus each species had the same internal efficiency of P use curve, and yields varied only with P concentration in tissue.Bicarbonate-extractable soil P was determined on soil samples taken in mid-July of 1989 and 1990. These soil test values were related to grain yields at harvest. The relationship between yield and soil test values had the same general form but varied for different species within years and for each species between years. It also varied for each species within years depending on the year the P was applied.  相似文献   

2.
In a field experiment on a sandplain soil in a low rainfall (326mm per annum) Mediterranean environment of south-western Australia, seven levels of single superphosphate, 0, 7.5, 10, 14, 19.5, 30 and 39 kg P ha–1, were placed at either 3, 5, 7, 9, 11 or 13 cm depth before sowing wheat (Triticum aestivum) at 3 cm. In a separate treatment, superphosphate was drilled with the seed (the normal practice). In the second year, the plots were sown with lupins (Lupinus angustifolius) at 3 cm depth with no additional superphosphate. In three separate treatments, superphosphate at 0, 14 and 39 kg P ha–1, was drilled with the lupin seed (the normal practice) on plots that had received no superphosphate in the first year. Yields of wheat and lupins were used as a measure of the effectiveness of the superphosphate placement treatments relative to the effectiveness of superphosphate drilled with seed of wheat (year 1) or lupins (year 2), to give relative effectiveness (RE) values in each of the two years.In the first year the RE of superphosphate was increased by about 20% when the fertilizer was placed 5 to 9 cm deep in the soil. In the second year, the RE of superphosphate for producing lupin grain was increased by about 30–60% where the fertilizer had been placed 5–13 cm deep in the previous year compared with freshly drilled 3 cm deep. The yield of wheat or lupins was closely related to the P content of plant tissue; each relationship was independent of the depth or year of superphosphate application.  相似文献   

3.
In a field experiment on deep, yellow, sandy soil near Badgingarra, Western Australia, the residual value of superphosphate applied one and two years previously was measured relative to freshly-applied superphosphate using yields of narrow-leafed lupin (Lupinus angustifolius), barley and wheat. In addition, soil samples were collected for measurement of bicarbonate-extractable soil P. This was also used to estimate the residual value of the superphosphate.For lupins and wheat, and for bicarbonate-extractable soil P, the residual value decreased with increasing level of application. For barley grain, the residual value was not significantly affected by the level of application.The decrease in residual value of superphosphate with increasing level of application is attributed to increased leaching of applied phosphorus (P) down the profile of the sandy soils as the level of application increases. This may reduce subsequent plant yields due to the delay in seedling roots reaching the P in the soil during the crucial early stages of plant growth.For lupins, the relationship between yield and the level of superphosphate applied was markedly sigmoidal. The relationship for wheat and barley was exponential. Consequently, at suboptimal levels of P application, lupins required about two to three times more P than wheat or barley to produce the same yield. However, lupins required less P to achieve near-maximum yield.  相似文献   

4.
In a field experiment in a Mediterranean climate (474 mm annual rainfall, 325 mm (69%) falling in the May to October growing season) on a deep sandy soil near Kojaneerup, south-western Australia, the residual value of superphosphate was measured relative to freshly-applied superphosphate. The grain yield of five successive crops (1988–1992) was used to measure the residual value: barley (Hordeum vulgare), barley, oat (Avena sativa), lupin (Lupinus angustifolius), and barley. There was no significant yield response to superphosphate applied to the first crop (barley, cv. Moondyne). There were no results for the second crop (barley) due to weeds or the fourth crop (lupin) due to severe wind erosion which damaged the crop. The residual value of superphosphate was measured using grain yields of the third crop (oat, cv. Mortlock) for superphosphate applied one and two years previously, and the fifth crop (barley, cv. Onslow) for superphosphate applied one, two, three and four years previously. In February 1992, before sowing the fifth crop, soil samples were collected to measure bicarbonate-extractable phosphorus (P) (soil test P) which was related to the subsequent grain yields of that crop. This relationship is the soil test P calibration used to estimate the current P status of soils when providing P fertilizer recommendations.The residual value of superphosphate declined markedly. For the third crop (oat), it was 6% as effective as freshly-applied superphosphate one year after application, and 2% as effective two years after application. For the fifth crop (barley), relative to freshly-applied superphosphate, the residual value of superphosphate in successive years after application was 46%, 6%, 3% and 2% as effective. The soil has a very low capacity to sorb P, and P was found to leach down the soil profile. The largest yield for P applied one and two years previously in 1990, and two, three and four years previously in 1992, was 35 to 50% lower than the maximum yield for freshly-applied P.Soil test P was very variable (coefficient of variation was 32%) and mostly less than 8µg P/g soil. The calibration relating yield (y axis) to soil test P (x axis) differed for soil treated with superphosphate one year previously compared with soil treated two, three and four years previously. The top 10 cm of soil was used for soil P testing, the standard depth. P was leached below this depth but some of the P leached below 10 cm may still have been taken up by plant roots. Consequently soil test P underestimated the P available to plants in the soil profile. The soil test P calibration therefore provided a very crude estimate of the current P status of the soil.  相似文献   

5.
Decreases in Colwell bicarbonate soil test P in the years after applying single (ordinary) superphosphate, and the residual value of superphosphate, was measured in a long-term field experiment on a duplex (texture contrast) soil (sand over lateritic ironstone gravel clay sand at 10–15 cm), at Wongan Hills, Western Australia, typical of many soils used to grow crops in Western Australia. Ten levels of P (0–91 kg P ha-1) were applied once only in late May to different plots in different years from 1988 to 1993. Wheat (Triticum aestivum), or lupin ( Lupinus angustifolius)) were sown in late May of each year, when the P treatments applied that year were banded (drilled) with the seed. Soil samples were collected each June to measure soil test P. Seed (grain) yields of the crops were measured each December. The residual value (RV) of P applied in previous years was calculated relative to P applied in the current year, using grain yields (RVyield) and soil test P (RVsoil). Soil test P measured on soil samples collected in June was related to yields measured in December that year to provide soil P test calibrations. Relative to P applied in the current year, soil test P decreased by between 15 to 30% for P applied one year previously, by 25 to 30% for P applied three years previously, and by 60 to 70% for P applied six years previously. Soil test P was affected by spatial variation, and it also varied in the different years, for P applied in the current year, one year previously, two years previously, etc. Compared with P applied in the current year, mean RVyield determined in the different years decreased by about 40% one year after P application, followed by a further 20% decrease for P applied two years previously, followed by a further 20% decrease for P applied three to five years previously. Relative to current P, RVsoil decreased by about 25% one year after P application, followed by a further 20% for P applied two years previously, followed by a further 10% for P applied three years ago, and followed by a further 6% for P applied four and five years ago. As measured in the different years, the soil P test calibration varied between years for P applied one, two etc. years previously. This was so even when the same cultivar of wheat was grown at the same site in different years.  相似文献   

6.
The residual value of superphosphate was measured in three glasshouse pot experiments using three different lateritic soils (pH CaCl2: 4.8–5.3) from south-western Australia. The residual value was estimated relative to levels of freshly-applied superphosphate using yield of dried tops and bicarbonatesoluble P extracted from the soil (soil test values). Up to five successive crops were grown. In each experiment, four different pasture legume species fertilized with mineral nitrogen were grown in rotation with a cereal species. The legume species includedMedicago polymorpha, M. murex, Trifolium subterraneum, Ornithopus compressus, O. perpusillus andO. pinnatus. The cereal species includedTriticum aestivum, ×Triticosecale, andHordeum vulgare. The comparative phosphorus (P) requirement of the different pasture legumes was estimated from the amount of P required to produce 50 or 90% of the maximum yield measured for each species at each harvest. Soil samples for the soil test were collected just before sowing each crop, and were related to the plant yields of that crop.Relative to freshly-applied superphosphate, the residual value of superphosphate measured using plant yield was similar for all pasture legume species, and decreased markedly, by about 50 to 80% between the first and second crop, and by a further 5 to 30% for subsequent crops. The decrease in residual value estimated using soil test values was less marked. For freshly-applied superphosphate, and for the same plant species, the relationship between yield and the level of P applied differed for different crops.There was no consistent, systematic trend for the comparative P requirement of the different legume species within and between crops of the three experiments and soils.For all crops, the relationship between yield of dried tops and P concentration in dried tissue generally differed for the different legume species, indicating the different species usually have different internal efficiency of P use curves. However, for each experiment, when the same cereal species was grown in all the pots, the relationship between yield and P concentration in tissue was similar for previously- and freshly-applied superphosphate, regardless of the pasture legume species grown in previous crops.The relationship between yield and soil test values usually differed, within each crop, for different plant species and for previously- and freshly-applied superphosphate. For the same plant species, the relationship also differed between different crops.  相似文献   

7.
The residual value of superphosphate and several rock phosphates was measured in three field experiments in Western Australia. The rock phosphates were Christmas Island C-grade ore, calcined C-grade ore (Calciphos) and apatite rock phosphates. The predictive capacity of the Colwell, Olsen and Bray 1 soil tests for phosphate were also evaluated.As measured by yields of variously wheat, oats, barley or clover, the effectiveness of an initial application of superphosphate decreased to about 50% of that of newly applied superphosphate between years 1 and 2, and further decreased to about 20% over subsequent years. At low levels of application, all the rock phosphates were between 10–20% as effective as superphosphate in the year of application for all experiments. Relative to newly applied superphosphate their effectiveness remained approximately constant in subsequent years for two experiments and doubled for the other experiment.The Colwell soil test predicted that the effectiveness of superphosphate decreased to about 45% between years 2 and 3, followed by a more gradual decrease to approximately 15%. At low levels of application, the effectiveness of the rock phosphates as predicted by the Colwell soil test values was initially very low relative to superphosphate (2–30%), and remained low in subsequent years (2–20%). For superphosphate treated soil, the proportion of the added phosphorus extracted generally increased as the level of application increased. By contrast, for rock phosphate treated soil, the proportion of added phosphorus extracted decreased as the level of application increased.For all three experiments there were highly significant positive correlations between amounts of P extracted by the three soil tests. Consequently all soil tests were equally predictive of yield but usually for each soil test separate calibrations between yield and soil test values were required for the different fertilizers and for each combination of fertilizer and plant species and for each year.  相似文献   

8.
Wheat was grown continuously in soil amended with 5 levels of superphosphate and with 4 levels of urea at 3 sites. The incidence and severity of take-all, caused byGaeumannomyces graminis var.tritici, declined with increasing rates of application of both superphosphate and urea.In both years, the severity of take-all on plants receiving neither superphosphate nor urea was about 40% while at the highest level of superphosphate and urea supply the take-all severity was approximately halved at 22%.There was an increase in grain yield in response to applied superphosphate and urea to the highest level of each nutrient. There was also an increase in the 1,000-kernal weights with superphosphate and urea fertilizer application.  相似文献   

9.
The effect of water supply on the response of subterranean clover (Trifolium subterraneum), annual medic (Medicago polymorpha) and wheat (Triticum aestivum) to levels of phosphorus (P) applied to the soil (soil P) was studied in four glasshouse experiments. P was applied as powdered superphosphate. In one experiment, the effect on plant yield of P concentration in the sown seed (seed P) was also studied. There were two water treatments: the soil was returned to field capacity, by watering to weight, either daily (adequate water, W1) or weekly (water stress, W2). In three experiments: (i) P concentration or content (P concentration × yield) in plant tissue was related to plant yield, and (ii) soil samples were collected before sowing to measure bicarbonate-extractable P (soil test P) which was related to subsequent plant yields.Compared with W1, water stress consistently reduced yields of dried tops and the maximum yield plateau for the relationship between yield and the level of P applied, by up to 25 to 60% in both cases. Compared with W1, the effectiveness of superphosphate for producing dried tops decreased for W2 by 11 to 45%, for both freshly-applied and incubated superphosphate. Consequently in the field, water supply, which varies with seasonal conditions, may effect plant yield responses to freshly — and previously — applied P fertilizer.Seed P increased yields, for W1, by 40% for low soil P and 20% for high soil P; corresponding values for W2 were 20 and 12%. Consequently proportional increases due to seed P were smaller for the water-stressed treatment.The relationship between yield and P concentration or content (internal efficiency of P use) differed for W1 and W2, so that the same P concentration or content in tissue was related to different yields. Estimating the P status of plants from tissue P values evidently depends on water supply, which in the field, differs in different years depending on seasonal conditions.The relationship between yield and soil test P differed for W1 and W2. Predicting yields from soil test P can only provide a guide, because plant yields depend on both P and water supply, which in the field may vary depending on seasonal conditions.  相似文献   

10.
To determine P loadings, added through poultry litter, sufficient to cause downward movement of P from the cultivated layer of a sandy soil, six rates of poultry litter were applied annually for four years to a site in central England. (total loading 0 – 1119 kg P ha-1). A single extra plot also received an extra 1000 kg ha-1 as triple superphosphate (TSP; total loading 2119 kg P ha-1) and three other treatments received 200 – 800 kg ha-1 P as TSP only. Annual soil sampling in 30-cm increments to 1.5-m depth provided information on P build-up in the topsoil and P movement to depth. There were strong linear trends between P balance (P applied – P removed in crops) and total P, Olsen bicarbonate extractable P and water-soluble P in the topsoil. Phosphorus from TSP and poultry litter fell on the same regression lines, suggesting that both would be equally effective as fertilizer sources. We calculated that 100 kg ha-1 surplus total P would increase the Olsen extractable P content by c. 6 mg kg-1 and the water-soluble P by c. 5 mg kg-1. Thus, relatively large amounts of P would need to be applied to raise soil P status. We found some evidence of P movement into the soil layers immediately below cultivation depth. However, neither soil sampling nor soil solution extracted through Teflon water samplers showed evidence of movement into the deep subsoil (1 m) despite large P loadings.  相似文献   

11.
Nine soil tests for phosphate were evaluated for predicting the yield and P content of wheat, barley and oats grown on a sandy soil in Western Australia: Olsen, modified Olsen 1 (soil:solution ratio 1:5), modified Olsen 2 (soil:solution ratio 1:50), Colwell, Bray 1, Bray 2, modified Bray 2T (shaking time 10 minutes), modified Bray 2C (pH 3.7) and lactate. The soil had been fertilized 5 years previously with 20 levels each of superphosphate (OSP, range 0 to 400 kg P ha–1) and Queensland rock phosphate (QRP, range 0 to 20 000 kg P ha–1). For each species and fertilizer taken separately, all the tests, except for lactate, gave a good prediction of yield. When data for OSP and QRP were pooled, Bray 2 and modified Bray 2T tests were unsatisfactory predictors of both yield and P content.A linear relationship (P < 0.05) between mean soil tests value () and the standard deviation ( ) of the test value was observed for each soil test. For QRP, the results for lactate were the most variable (i.e./ was greatest) followed by modified Olsen 2 > Bray 1 > Bray 2 > Olsen > modified Bray 2C > modified Olsen 1 > modified Bray 2T > Colwell. The order for OSP fertilized soil was Bray 1 > modified Bray 2T > Bray 2 > Olsen > Colwell > modified Bray 2C > modified Olsen 1 > lactate > modified Olsen 2. For combined OSP and QRP data, the results of the Olsen 1 and Colwell extractions were the least variable.Errors in the prediction of yield ( Y ) for all crops resulting from an error in soil test values () were calculated. For OSP-fertilized soil variability in values for the Bray-1 test provided the highest error (about 16%) in the prediction of the yield, followed by Bray 2 (12%) > Bray 2T (10%) > Olsen (8%) > Colwell (7%) > modified Bray 2C (6%) > lactate (4%). Maximum error was at yields of about 65% of maximum yield. For soil fertilized with QRP, lactate provided the highest error (about 10%) in the prediction of yield, followed by the other tests (< 6%). Maximum error was at yields of about 35% of maximum yield.The Colwell soil test gave the most accurate overall prediction of yield for both fertilizers.  相似文献   

12.
The Pi test for phosphorus (P) is a new method in which strips of iron oxide impregnated filter paper are used as a sink to sorb and extract P from a soil solution. In a greenhouse experiment, the Olsen and Pi tests were compared for their effectiveness in evaluating P availability to maize on calcareous soils. Phosphate rock from Togo, partially acidulated with H2SO4 at 50% acidulation level (PAPR 50% H2SO4) and single superphosphate (SSP) were applied at different rates to a calcareous soil (Vernon Clay, pH 8.2, CaCO3 18.9%) which was preincubated with KH2PO4 to raise plant-available P to different levels. In soils treated with SSP, dry-matter yield of maize correlated equally well with Pi-P and with Olsen-P (r = 0.96***). P uptake correlated significantly with Pi-P (r = 0.94***) as well as Olsen-P (r = 0.97***). Likewise, in soils fertilized with PAPR, significant correlations were found between dry-matter yield and Pi-P (r = 0.97***) and between dry-matter yield and Olsen-P (r = 0.94***). When all the data were pooled, Pi-P and Olsen-P correlated equally well with both dry-matter weight (r = 0.97***) and P uptake (r = 0.94***). Phosphorus extracted by the Pi test correlated significantly with P extracted by the Olsen test (r = 0.99***).  相似文献   

13.
The effectiveness in the year of application of three phosphorus fertilizers, superphosphate, Christmas Island C-grade ore, and 500°C calcined Christmas Island C-grade ore (Calciphos), was measured for 5 consecutive years in a field experiment on a lateritic soil. The residual value of the phosphorus fertilizers was also measured for 6 years. Dry matter production of subterranean clover-based pasture and bicarbonate extractable soil phosphorus were used as indicators of fertilizer effectiveness.Despite the use of very large amounts of C-grade ore and Calciphos, the plateau of the pasture yield versus fertilizer applied curve for these fertilizers did not reach the yield plateau achieved with superphosphate in either the short or long term.C-grade ore and Calciphos were 3% and 8% as effective as superphosphate for dry matter production in the year of application. Relative to superphosphate applied in the current year the effectiveness of superphosphate decreased by about 70% between the first and second year after application and decreased by a further 14% from year 3 to year 6. C-grade ore and Calciphos remained about 2% and 9% as effective as currently applied superphosphate each year.The residual value of superphosphate as measured by bicarbonate-extracted soil phosphorus decreased by about 60% from year 2 to year 7. The residual value of Calciphos was very low for year 2, doubled from year 2–4 and thereafter decreased gradually to its original value by year 7. The residual value of C-grade ore was extremely low throughout the experiment. Thus after year 2, compared to pasture yield, bicarbonate extracted soil phosphorus overestimated the residual value of superphosphate and calciphos.It follows that neither C-grade ore or Calciphos are suitable replacement fertilizers for superphosphate for use on pastures growing on lateritic soils in south-western Australia.  相似文献   

14.
In two field experiments, one conducted in 1987 and the other in 1988, the effect of maturity grading (days from emergence of seedlings to appearance of first flowers) of four clover cultivars (Trifolium subterraneum cvv. Northam, Dalkeith, Junee and Karridale) on the relationship between yield (herbage and seed) and the level of superphosphate applied was measured for dense (170 kg seed ha–1), single-strain, undefoliated swards. In another two field experiments, one conducted in 1987 and the other in 1988, the effect of the density of clover plants, produced by sowing 1, 10, 100 and 1,000 kg seed ha–1 ofT. subterraneum cv. Karridale in 1987 and cv. Junee in 1988, on the relationship between yield (herbage and seed) and the level of superphosphate applied was measured for single-strain, undefoliated swards. In all experiments, phosphorus concentration in dried herbage or seed (tissue test for P) were related to plant yields.For herbage production, the maturity of the clover cultivar largely affected the maximum yields (i.e. yield plateaux) achieved for the relationship between yield and the level of phosphorus (P) applied. The P requirements of the different cultivars were similar. For seed production, however, the different cultivars achieved different maximum yields and the P requirement of the clover cultivars were different. The later-maturing cultivars would have experienced greater water stress whilst producing seed which may have affected the P requirements of the different cultivars for seed production.For herbage production in the two plant density experiments, as the density of clover plants in the swards was increased, then the maximum herbage yields for the relationship between yield and the level of P applied increased markedly. The P requirements of the different density swards was in most cases not greatly affected. By contrast, the maximum seed yields tended to decrease drastically with increasing plant density. The 10 kg seed ha–1 sowing rate produced the largest maximum seed yields. Swards with larger plant densities produced greater herbage yields which presumably increased water stress during seed production thus reducing the maximum seed yields for the relationship between yield and the level of P applied.When tissue test for P values were related to absolute yields, foreach harvest, different relationship between yield and tissue test for P values were required for different clover cultivars or for swards with different plant densities. However, expressing yield as a percentage of the maximum yield for the relationship between yield and tissue test for P values reduced differences foreach harvest due to different clover cultivars or different plant densities. But regardless of whether absolute yield or percentage of the maximum yield were used, different relationships between yield and tissue test for P values were required fordifferent harvest, both in the same or different years.  相似文献   

15.
The objective of the investigation was to examine whether there exist relationships between the optimum nitrogen fertilizer rate for winter wheat and soil nitrogen fractions extracted by electroultrafiltration (EUF) from autumn samples of the upper soil layer (0–30 cm). Optimum nitrogen fertilizer rates were derived from grain yield curves of field trials carried out with increasing nitrogen fertilizer rates on 19 different sites in 1985/86 and 1986/87. Most soils were luvisols derived from loess, two soils were brown earths and one a pararendzina. Total Nitrogen fertilizer rates were 0, 40, 80, and 120 kg N/ha applied twice before ear emergence. The final nitrogen rate at ear emergence was the same for all treatments, namely 60 kg N/ha.Optimum nitrogen fertilizer rates were derived from the grain yield curve fitted to a modified Mitscherlich equation. The optimum nitrogen fertilizer rates were correlated with the nitrogen fractions extracted by EUF. The regression equation thus obtained showed that NO 3 - , the organic N fraction (EUF Norg), and the EUF Norg-quotient each had a highly significant impact on the optimum nitrogen fertilizer rate. The higher the amounts of EUF-N extracted the lower the optimum nitrogen rate. Substituting the EUF Norg-fraction for total nitrogen concentration in the upper soil layer gave a poorer relationship between the optimum nitrogen fertilizer rate and the soil data. In absolute terms the EUF Norg-fraction had by far the greatest impact on calculating the optimum nitrogen fertilizer rate. The investigation shows that the EUF method is a suitable technique for the determination of available soil nitrogen from which optimum nitrogen fertilizer rates can be derived for winter wheat cultivated under soil and climatic conditions typical for cereal growing areas in central Europe.  相似文献   

16.
The residual value of phosphorus from superphosphate, crandallite rock phosphate (Christmas Island C-grade ore), 500°C calcined crandallite rock phosphate (Calciphos) and apatite rock phosphate from Queensland, Australia, was measured in a 6 year field experiment sited on lateritic soil in south-western Australia. Different amounts of each fertilizer were applied at the commencement of the experiment, and either left on the soil surface or mixed through the soil by cultivating to a depth of about 10 cm. Dry matter production of subterranean clover measured in spring (August) and bicarbonate-extractable phosphorus determined from soil samples collected in summer (January–February) were used as indicators of fertilizer effectiveness.The effectiveness values calculated for each fertilizer each year were similar for the treatments that were left on the soil surface and those which were mixed through the soil. The effectiveness of both ordinary and triple superphosphate were similar each year. They were the most effective fertilizers for the duration of the experiment. Using pasture yield as an indicator, the effectiveness of the superphosphates decreased by about 50% from year 1 to year 2, and by a further 10% over the remaining 4 years. Using bicarbonate-extracted soil phosphorus the effectiveness of both superphosphates decreased in a more uniform fashion by about 60% from year 2 to year 6. The effectiveness of all the rock phosphate fertilizers was approximately constant through time. As calculated from yield and bicarbonate-soluble phosphorus values, C-grade ore, Calciphos and the Queensland apatite were respectively 5%, 20% and 7% as effective as freshly applied superphosphate.The proportion of the total phosphorus content present in the rock phosphates which was initially soluble in neutral ammonium citrate was a poor predictor of the effectiveness of the phosphorus from these fertilizers determined using herbage yield or the amount of bicarbonate — soluble phosphorus extracted from the soil.The bicarbonate soil test did not predict the same future production for superphosphate and some of the rock phosphates in years 2 and 3 of the experiment, indicating that different soil test calibration curves are needed for the different fertilizers.  相似文献   

17.
A greenhouse study was conducted to determine if soil pH affects the requirement for water-soluble P and the tolerance of water-insoluble impurities in TSP fertilizers. Two commercial TSP fertilizers were selected to represent a range in phosphate rock sources and impurities. Phosphate fertilizer impurities were isolated as the water-washed fraction by washing whole fertilizers with deionized water. TSP fertilizers with various quantities of water-soluble P (1.2 to 99% water-soluble P) were simulated by mixing the water-washed fertilizer fractions or dicalcium phosphate (DCP) with reagent-grade monocalcium phosphate (MCP). The fertilizers were applied to supply 40 mg AOAC available P kg–1 to a Mountview silt loam (fine-silty, siliceous, thermic Typic Paleudults). Wheat (Triticum aestivum (L.)) was harvested at 49 and 84 days after planting. Soil pH values at the final forage harvest were 5.4±0.16 and 6.4±0.15. At a soil pH of 5.4, the TSP fertilizers required only 37% water-soluble P to reach maximum yields while at pH 6.4 the fertilizers required 63% water-soluble P. Results of this study show that higher levels of water -insoluble P can be tolerated in TSP fertilizers when applied to acid soils. Phosphorus uptake was not affected by soil pH, but for the mixtures containing the fertilizer residues the source having the lowest level of Fe and Al had a higher relative agronomic effectiveness.  相似文献   

18.
The phosphorus (P) requirement for grain production of different crop species (oats (Avena sativa), barley (Hordeum vulgare), triticale (xTriticosecale), narrow-leafed lupins (Lupinus angustifolius), and sandplain lupins (L. cosentinii) was compared with wheat (Triticum aestivum) in five field experiments on different lateritic soils in south-western Australia. Seven or eight levels of superphosphate were applied at the start of each experiment. The amount of P required to produce 70% (four experiments) or 90% (one experiment) of the maximum yield was used to compare P requirements. Large differences in the P requirements of the species were obtained.On P deficient soil in 3 experiments, oats required from 50 to 70% less P than wheat, but required 40% more P on a soil with a long history of superphosphate applications.Compared with wheat, in the year of P application, barley required 50% less P in one experiment, had similar P requirements in two experiments, and required 80% more P in another experiment. In the years after P application, barley required 20% less P in two experiments.On an acidic soil triticale required from 50% to 70% less P than wheat, but on less acidic soil it required 100% more P.In the year of P application, narrow-leafed lupins required 800% more P than wheat in one experiment, and 30% more P in the other experiment.In the year of P application, sandplain lupins required 70% less P than wheat in one experiment.  相似文献   

19.
Organic farming practice prohibits the use of triple superphosphate (TSP) as a source of phosphorus. As basic slag is not now generally available, interest is focused on the relative value of ground rock phosphate (GRP). A comparison of TSP and Gafsa GRP was made during 1988–92 as to their ability to increase DM production under cutting from newly sown grass/white clover swards established in 1987 on an acid clay soil in SW England. Averaged over the different P fertiliser inputs and years, the DM yield was 8.0 t ha-1 y-1 (range 6.93–9.81) compared to 6.3t ha-1y-1 (range 6.00–7.71) without added P. Lime was added at either 3 or 6t ha-1 in 1987, and at half these rates in 1990. Whereas the yield improved by 45% with P at the lower rate of lime, it improved only by 12% at the higher rate. When P fertiliser was applied annually at 30 kg ha-1, TSP was superior to GRP, but when applied in one initial dose of 120 kg ha-1, GRP was superior over the subsequent 4 year period. There was no consistent effect of the addition of either P or lime on the clover content of the sward. The alkaline bicarbonate soil test (Olsen P) was a good predictor of available P within a given year; there was a general reduction of P availability over the course of the experiment. Mechanisms to explain the longer term effectiveness of GRP are postulated and discussed. It is concluded that farmers who are limited to using GRP rather than TSP would suffer a yield penalty over the longer term of 11.5%, and that P fertilizer for the ley phase in a rotation should be incorporated in one dose at the outset.  相似文献   

20.
Coastal superphosphate, a partially acidulated rock phosphate (PARP), is being considered as an alternative fertilizer to single superphosphate for pastures in high rainfall (> 800 mm annual average) areas of south-western Australia. The effectiveness of single and coastal superphosphate, as P fertilizers, was measured in two field experiments using dry herbage yield of subterranean clover (Trifolium subterraneum). The experiments were started in April 1990 and were terminated at the end of 1993. In the years after P applications, soil samples were collected each January to measure Colwell soil-test P, which was related to plant yields measured later on that year, to provide soil P test calibrations.Relative to freshly-applied single superphosphate, the effectiveness of freshly-applied coastal superphosphate and the residues of previously-applied single and coastal superphosphate were less effective in some years (from 3% as effective to equally effective), and up to 100% more effective in other years. This large range in effectiveness values in different years is attributed to different climatic conditions. Soil P test calibrations were different for soils treated with single or coastal superphosphate. The calibrations were also different for different yield assessments (harvests) in the same year, and in different years. Consequently soil P testing can only provide a very crude estimate of the current P status of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号