首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collaborative filtering is one of the most successful and widely used methods of automated product recommendation in online stores. The most critical component of the method is the mechanism of finding similarities among users using product ratings data so that products can be recommended based on the similarities. The calculation of similarities has relied on traditional distance and vector similarity measures such as Pearson’s correlation and cosine which, however, have been seldom questioned in terms of their effectiveness in the recommendation problem domain. This paper presents a new heuristic similarity measure that focuses on improving recommendation performance under cold-start conditions where only a small number of ratings are available for similarity calculation for each user. Experiments using three different datasets show the superiority of the measure in new user cold-start conditions.  相似文献   

2.
The rapid development of Internet technologies in recent decades has imposed a heavy information burden on users. This has led to the popularity of recommender systems, which provide advice to users about items they may like to examine. Collaborative Filtering (CF) is the most promising technique in recommender systems, providing personalized recommendations to users based on their previously expressed preferences and those of other similar users. This paper introduces a CF framework based on Fuzzy Association Rules and Multiple-level Similarity (FARAMS). FARAMS extended existing techniques by using fuzzy association rule mining, and takes advantage of product similarities in taxonomies to address data sparseness and nontransitive associations. Experimental results show that FARAMS improves prediction quality, as compared to similar approaches. Cane Wing-ki Leung is a PhD student in the Department of Computing, The Hong Kong Polytechnic University, where she received her BA degree in Computing in 2003. Her research interests include collaborative filtering, data mining and computer-supported collaborative work. Stephen Chi-fai Chan is an Associate Professor and Associate Head of the Department of Computing, The Hong Kong Polytechnic University. Dr. Chan received his PhD from the University of Rochester, USA, worked on computer-aided design at Neo-Visuals, Inc. in Toronto, Canada, and researched in computer-integrated manufacturing at the National Research Council of Canada before joining the Hong Kong Polytechnic University in 1993. He is currently working on the development of collaborative Web-based information systems, with applications in education, electronic commerce, and manufacturing. Fu-lai Chung received his BSc degree from the University of Manitoba, Canada, in 1987, and his MPhil and PhD degrees from the Chinese University of Hong Kong in 1991 and 1995, respectively. He joined the Department of Computing, Hong Kong Polytechnic University in 1994, where he is currently an Associate Professor. He has published widely in the areas of computational intelligence, pattern recognition and recently data mining and multimedia in international journals and conferences and his current research interests include time series data mining, Web data mining, bioinformatics data mining, multimedia content analysis,and new computational intelligence techniques.  相似文献   

3.
Memory-based collaborative filtering (CF) makes recommendations based on a collection of user preferences for items. The idea underlying this approach is that the interests of an active user will more likely coincide with those of users who share similar preferences to the active user. Hence, the choice and computation of a similarity measure between users is critical to rating items. This work proposes a similarity update method that uses an iterative message passing procedure. Additionally, this work deals with a drawback of using the popular mean absolute error (MAE) for performance evaluation, namely that ignores ratings distribution. A novel modulation method and an accuracy metric are presented in order to minimize the predictive accuracy error and to evenly distribute predicted ratings over true rating scales. Preliminary results show that the proposed similarity update and prediction modulation techniques significantly improve the predicted rankings.  相似文献   

4.
《微型机与应用》2014,(14):71-74
数据稀疏性问题是传统的协同过滤算法主要的瓶颈之一。迁移学习利用辅助领域的用户评分信息,有效地缓解了目标领域的稀疏性问题。现有的迁移学习推荐算法中,普遍存在领域间的用户需要一致、模型平衡参数较多等限制。针对这些局限性,提出了一种用户相似度迁移的模型,利用辅助领域的用户相似度帮助目标领域用户相似度的学习。此外,通过一种用户特征子空间的距离来度量模型的平衡参数,使模型更加具有智能性。实验结果表明,该模型与其他协同过滤算法相比较能够更有效地缓解数据稀疏性问题。  相似文献   

5.
In this paper we describe a collaborative filtering system for automatically recommending high-quality information to users with similar interests on arbitrarily narrow information domains. It asks a user to rate a gauge set of items. It then evaluates the user's rates and suggests a recommendation set of items. We interpret the process of evaluation as an inference mechanism that maps a gauge set to a recommendation set. We accomplish the mapping with fuzzy associative memory. We implemented the suggested system in a Web server and tested its performance in the domain of retrieval of technical papers, especially in the field of information technologies. The experimental results show that it may provide reliable recommendations.  相似文献   

6.
Based on the introduction to the user-based and item-based collaborative filtering algorithms, the problems related to the two algorithms are analyzed, and a new entropy-based recommendation algorithm is proposed. Aiming at the drawbacks of traditional similarity measurement methods, we put forward an improved similarity measurement method. The entropy-based collaborative filtering algorithm contributes to solving the cold-start problem and discovering users’ hidden interests. Using the data selected from Movielens and Book-Crossing datasets and MAE accuracy metric, three different collaborative filtering recommendation algorithms are compared through experiments. The experimental scheme and results are discussed in detail. The results show that the entropy-based algorithm provides better recommendation quality than user-based algorithm and achieves recommendation accuracy comparable to the item-based algorithm. At last, a solution to B2B e-commerce recommendation applications based on Web services technology is proposed, which adopts entropy-based collaborative filtering recommendation algorithm.  相似文献   

7.
Novice users often do not have enough domain knowledge to create good queries for searching information on-line. To help alleviate the situation, exploration techniques have been used to increase the diversity of the search results so that not only those explicitly asked will be returned, but also those potentially relevant ones will be returned too. Most existing approaches, such as collaborative filtering, do not allow the level of exploration to be controlled. Consequently, the search results can be very different from what is expected. We propose an exploration strategy that performs intelligent query processing by first searching usable old queries, and then utilising them to adapt the current query, with the hope that the adapted query will be more relevant to the user’s areas of interest. We applied the proposed strategy to the implementation of a personal information assistant (PIA) set up for user evaluation for 3 months. The experimental results showed that the proposed exploration method outperformed collaborative filtering, and mutation and crossover methods by around 25% in terms of the elimination of off-topic results.  相似文献   

8.
基于用户的协作过滤信息推荐模型研究   总被引:2,自引:0,他引:2  
当网络成为人们获取信息的主要途径时,"信息过量"与"信息饥饿"的矛盾却日益凸现,因此,提供个性化服务显得尤为必要.提出了一种基于用户的协作过滤信息推荐模型,实验结果表明,该模型能够有效地改善传统协作过滤推荐技术所面临的扩展性和数据高维稀疏性问题,同时信息推荐质量较传统推荐算法还有明显提高.  相似文献   

9.
A new approach for combining content-based and collaborative filters   总被引:1,自引:0,他引:1  
With the development of e-commerce and the proliferation of easily accessible information, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. A variety of techniques have been proposed for performing recommendations, including content-based and collaborative techniques. Content-based filtering selects information based on semantic content, whereas collaborative filtering combines the opinions of other users to make a prediction for a target user. In this paper, we describe a new filtering approach that combines the content-based filter and collaborative filter to capitalize on their respective strengths, and thereby achieves a good performance. We present a series of recommendations on the selection of the appropriate factors and also look into different techniques for calculating user-user similarities based on the integrated information extracted from user profiles and user ratings. Finally, we experimentally evaluate our approach and compare it with classic filters, the result of which demonstrate the effectiveness of our approach.  相似文献   

10.
In recent years, Collaborative Filtering (CF) has proven to be one of the most successful techniques used in recommendation systems. Since current CF systems estimate the ratings of not-yet-rated items based on other items’ ratings, these CF systems fail to recommend products when users’ preferences are not expressed in numbers. In many practical situations, however, users’ preferences are represented by ranked lists rather than numbers, such as lists of movies ranked according to users’ preferences. Therefore, this study proposes a novel collaborative filtering methodology for product recommendation when the preference of each user is expressed by multiple ranked lists of items. Accordingly, a four-staged methodology is developed to predict the rankings of not-yet-ranked items for the active user. Finally, a series of experiments is performed, and the results indicate that the proposed methodology produces high-quality recommendations.  相似文献   

11.
Considering the increasing demand of multi-agent systems, the practice of software reuse is essential to the development of such systems. Multi-agent domain engineering is a process for the construction of domain-specific agent-based reusable software artifacts, like domain models, representing the requirements of a family of multi-agent systems in a domain, and frameworks, implementing reusable agent-based design solutions to those requirements. This article describes the domain modeling tasks of the MADEM methodology and a case study on the application of GRAMO, a MADEM technique, for the construction of the domain model of ONTOWUM, specifying the common and variable requirements of a family of Web recommender systems based on usage mining and collaborative filtering.  相似文献   

12.
The traditional recommender systems are usually oriented to general situations in daily lives (e.g. recommend movies, books, music, news and etc.), but seldom cover the recommendation scenarios for the collaborative team environments. We have done an explorative study on collaborative filtering mechanism for collaborative team environments, which is some kind of multi-dimensional recommender systems problem with consideration of workflow context. This paper proposed 3-dimensional workflow space model, and investigated the new similarities measure between members in workflow space. Then, the new similarities measure is utilized into collaborative filtering for recommender systems in collaborative team environments. At last, the efficiency and usability of the proposed method are validated by experiments referring to a real-world collaborative team of a manufacturing enterprise.  相似文献   

13.
《国际计算机数学杂志》2012,89(9):1077-1096
In this paper, we propose two new filtering algorithms which are a combination of user-based and item-based collaborative filtering schemes. The first one, Hybrid-Ib, identifies a reasonably large neighbourhood of similar users and then uses this subset to derive the item-based recommendation model. The second algorithm, Hybrid-CF, starts by locating items similar to the one for which we want a prediction, and then, based on that neighbourhood, it generates its user-based predictions. We start by describing the execution steps of the algorithms and proceed with extended experiments. We conclude that our algorithms are directly comparable to existing filtering approaches, with Hybrid-CF producing favorable or, in the worst case, similar results in all selected evaluation metrics.  相似文献   

14.
E-commerce systems employ recommender systems to enhance the customer loyalty and hence increasing the cross-selling of products. However, choosing appropriate similarity measure is a key to the recommender system success. Based on this measure, a set of neighbors for the current active user is formed which in turn will be used later to recommend unseen items to this active user. Pearson correlation coefficient, the most popular similarity measure for memory-based collaborative recommender system (CRS), measures how much two users are correlated. However, statistic’s literature introduced many other coefficients for matching two sets (vectors) that may perform better than Pearson correlation coefficient. This paper explores Jaccard and Dice coefficients for matching users of CRS. A more general coefficient called a Power coefficient is proposed in this paper which represents a family of coefficients. Specifically, Power coefficient gives many degrees for emphasizing on the positive matches between users. However, CRS users have positive and negative matches and therefore these coefficients have to be modified to take negative matches into consideration. Consequently, they become more suitable for CRS research. Many experiments are carried out for all the proposed variants and are compared with the traditional approaches. The experimental results show that the proposed variants outperform Pearson correlation coefficient and cosine similarity measure as they are the most common approaches for memory-based CRS.  相似文献   

15.
Customers’ purchase behavior may vary over time. Traditional collaborative filtering (CF) methods make recommendations to a target customer based on the purchase behavior of customers whose preferences are similar to those of the target customer; however, the methods do not consider how the customers’ purchase behavior may vary over time. In contrast, the sequential rule-based recommendation method analyzes customers’ purchase behavior over time to extract sequential rules in the form: purchase behavior in previous periods ⇒ purchase behavior in the current period. If a target customer’s purchase behavior history is similar to the conditional part of the rule, then his/her purchase behavior in the current period is deemed to be the consequent part of the rule. Although the sequential rule method considers the sequence of customers’ purchase behavior over time, it does not utilize the target customer’s purchase data for the current period. To resolve the above problems, this work proposes a novel hybrid recommendation method that combines the segmentation-based sequential rule method with the segmentation-based KNN-CF method. The proposed method uses customers’ RFM (Recency, Frequency, and Monetary) values to cluster customers into groups with similar RFM values. For each group of customers, sequential rules are extracted from the purchase sequences of that group to make recommendations. Meanwhile, the segmentation-based KNN-CF method provides recommendations based on the target customer’s purchase data for the current period. Then, the results of the two methods are combined to make final recommendations. Experiment results show that the hybrid method outperforms traditional CF methods.  相似文献   

16.
《微型机与应用》2017,(15):25-28
传统的协同过滤推荐算法以用户对所有物品的评分向量作为计算用户相似度的依据,没有考虑到物品属性对用户兴趣的反映。为此,提出一种新的改进的相似度计算方法,引入了"用户兴趣分布矩阵"的定义,设计了启发式的评分预测方式,即根据兴趣相似度选出TOP-K用户之后,以用户标记的物品数量作为该用户的权重来预测评分。在Movielens数据集上的测试结果表明,改进后的算法相比传统的算法在平均绝对误差(MAE)上降低了7.3%。  相似文献   

17.
基于协作过滤的个性化服务技术研究   总被引:1,自引:1,他引:1  
随着网络的普及和发展以及网络信息量的日益增加,为广大用户提供个性化服务显得尤为必要.在对个性化服务技术相关知识进行概述的基础上介绍了协作过滤信息推荐技术的基本原理、分类、所面临的困难等,并对国内外研究现状等进行了综述.最后时基于协作过滤的个性化服务技术进一步的研究工作进行了展望.  相似文献   

18.
Recommender systems aim at solving the problem of information overload by selecting items (commercial products, educational assets, TV programs, etc.) that match the consumers’ interests and preferences. Recently, there have been approaches to drive the recommendations by the information stored in electronic health records, for which the traditional strategies applied in online shopping, e-learning, entertainment and other areas have several pitfalls. This paper addresses those problems by introducing a new filtering strategy, centered on the properties that characterize the items and the users. Preliminary experiments with real users have proved that this approach outperforms previous ones in terms of consumers’ satisfaction with the recommended items. The benefits are especially apparent among people with specific health concerns.  相似文献   

19.
The information globalization induced by the rapid development of the Internet and the accompanying adoption of the Web throughout the society leads to Websites which reach large audiences. The diversity of the audiences and the need of customer retention require active Websites, which expose themselves in a customized or personalized way: We call those sites User-adapted Websites. New technologies are necessary to personalize and customize content. Information filtering can be used for the discovery of important content and is therefore a key-technology for the creation of user-adapted Websites.

In this article, we focus on the application of collaborative filtering for user-adapted Websites. We studied techniques for combining and integrating content-based filtering with collaborative filtering in order to address typical problems in collaborative filtering systems and to improve the performance. Other issues which are mentioned but only lightly covered include user interface challenges. To validate our approaches we developed a prototype user-adapted Website, the Active WebMuseum, a museum Website, which exposes its collection in a personalized way by the use of collaborative filtering.  相似文献   


20.
Collaborative filtering (CF) is a widely-used technique for generating personalized recommendations. CF systems are typically based on a central storage of user profiles, i.e., the ratings given by users to items. Such centralized storage introduces potential privacy breach, since all the user profiles may be accessible by untrusted parties when breaking the access control of the centralized system. Hence, recent studies have focused on enhancing the privacy of CF users by distributing their user profiles across multiple repositories and obfuscating the user profiles to partially hide the actual user ratings. This work combines these two techniques and investigates the unavoidable side effect of data obfuscation: the reduction of the accuracy of the generated CF predictions. The evaluation, which was conducted using three different datasets, shows that considerable parts of the user profiles can be modified without observing a substantial decrease of the CF prediction accuracy. The evaluation also indicates what parts of the user profiles are required for generating accurate CF predictions. In addition, we conducted an exploratory user study that reveals positive attitude of users towards the data obfuscation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号