首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Short-term hypergravity exposure is shown to retard seed germination, growth and photosynthesis in wheat caryopses. This study investigates the reversibility of effects of short-term hypergravity on imbibed wheat (Triticum aestivum var L.) caryopses. After hypergravity exposure (500 × g ? 2500 × g for 10 min) on a centrifuge, exposed caryopses were kept under normal gravity (1 × g) up to six days and then sown on agar. Results of the present study showed that percentage germination and growth were completely restored for DAY 6 compared to DAY 0. Restoration of germination and growth was accompanied by increased α-amylase activity. The specific activity of antioxidative enzyme viz. catalase and guaiacol peroxidase was lowered on DAY 6 compared to DAY 0 suggesting an alleviation of oxidative cellular damage against hypergravity stress. Chlorophyll pigment recovery along with chlorophyll fluorescence (PI and Fv/Fm) on DAY 6 indicates a transient rather than permanent damage of the photosynthetic apparatus. Thus, our findings demonstrate that short-term hypergravity effects are reversible in wheat caryopses. The metabolic cause of restoration of seed germination and growth upon transferring the caryopses to normal gravity is performed by a reactivation of carbohydrate- metabolizing enzymes, α-amylase and alleviation of oxidative stress damage with subsequent recovery of chlorophyll biosynthesis and photosynthetic activity.  相似文献   

2.
The survival of archaeabacteria in extreme inhabitable environments on earth that challenge organismic survival is ubiquitously known. However, the studies related to the effect of hypergravity on the growth and proliferation of archaea are unprecedented. The survival of organisms in hypergravity and rocks in addition to resistance to cosmic radiations, pressure and other extremities is imperative to study the possibilities of microbial travel between planets and endurance in hyperaccelerative forces faced during ejection of rocks from planets. The current investigation highlights the growth of an extremophilic archaeon isolated from a rocky substrate in hypergravity environment. The haloalkaliphilic archaeon, Natronococcus jeotgali RR17 was isolated from an Indian laterite rock, submerged in the Arabian sea lining Coastal Maharashtra, India. The endolithic haloarchaeon was subjected to hypergravity from 56 – 893 X gusing acceleration generated by centrifugal rotation. The cells of N. jeotgali RR17 proliferated and demonstrated good growth in hypergravity (223 X g). This is the first report on isolation of endolithic haloarchaeon N. jeotgali RR17 from an Indian laterite rock and its ability to proliferate in hypergravity. The present study demonstrates the ability of microbial life to survive and proliferate in hypergravity. Thus the inability of organismic growth in hypergravity may no longer be a limitation for astrobiology studies related to habitability of substellar objects, brown dwarfs and other planetary bodies in the universe besides planet earth.  相似文献   

3.
Photodiodes sensitive in the wavelength ranges 1–2.5 μm and 1–4.8 μm at room temperature have been created on the basis of n-GaSb/n-GaInAsSb/p-AlGaAsSb double-junction heterostructures of two types. The broadband photosensitivity of the diode structures of both types is indicative of the complete separation of photogenerated electron-hole pairs in the staggered n-p heterojunction (n-GaInAsSb/p-AlGaAsSb). The noise characteristics of photodetectors based on the proposed diode structures have been studied. Prospects of the use of these devices in thermophotovoltaic cells for low-temperature radiation sources are considered.  相似文献   

4.
The yeast Saccharomyces cerevisiae is commonly employed in industrial ethanol production, regardless of the capability of Kluyveromyces marxianus strains to produce ethanol at similar or higher levels and on inhibitory conditions. Therefore, in this work strains of S. cerevisiae (ethanol RED and AR5) and K. marxianus (SLP1 and OFF1) were compared for ethanol production from sugarcane bagasse (SCB) and wheat straw (WS) hydrolysates. As it is known, during the lignocellulosic hydrolysis not only free sugars were obtained (SCB, g L?1: glucose 7.64, xylose 8.38, arabinose 2.43; and WS, g L?1: glucose 6.07, xylose 6.36, arabinose 2.09) but also growth inhibitors of yeast such as hydroxymethylfurfural and furfural that could modify the fermentation capability. The volumetric ethanol productivity (Q p) was evaluated, and it was observed that the K. marxianus SLP1 was the most efficient for ethanol production reaching a Q p of 0.292 and 0.250 g L?1 h?1 on SCB and WS hydrolysates, respectively. In contrast, S. cerevisiae AR5 and ethanol RED exhibited a reduced Q p on SCB, but similar values of Q p to K. marxianus OFF1 on WS. The results obtained show that it is possible to select K. marxianus yeast strains for ethanol production using SCB and WS hydrolysates obtaining higher Q p than S. cerevisiae yeast strains. Considering the efficiency of ethanol production and the tolerance to inhibitors, K. marxianus strain SLP1 possesses a great potential as an industrial yeast for lignocellulosic ethanol production.  相似文献   

5.
In this paper, we investigate the dynamical spin susceptibility in the bi-directional charge density wave (BCDW) state by adopting a random-phase approximation. In the BCDW state, we find that no spin resonance exists and only a broad commensurate peak appears for the frequency dependence of the dynamical spin susceptibility at Q = (π,π), though a low-energy spin gap feature can also be found as in the superconducting state. While the “hourglass” type of the dispersion for the BCDW state bears some similarities with that in the superconducting state, the momentum distribution of Im χ +?(Q,ω) is just the opposite with the incommensurate peaks lying along the diagonal direction for the energy below ω c and along the axial direction above ω c . In the coexistence of SC and BCDW, the frequency dependence of the dynamical spin susceptibility at Q = (π,π) generally shows the two-peak structure, reflecting two energy scales of the spin excitations. These unique features may serve as signatures to verify whether or not the BCDW state is responsible for the formation of the Fermi arcs.  相似文献   

6.
The numerical-analytical investigation of the shock forced oscillator (SFO) model is complete. Approaches for calculating the probabilities of quantum transitions from the initial to some final state with VV energy exchange of diatomic molecules and VV and VT energy exchange of polyatomic molecules are considered. Formulas for calculating the probabilities of the \({W_{{i_1},{i_2} \to {f_1},{f_2}}}\) transition for VV energy exchange in collision of molecules AB and CD within the harmonic approximation are represented (SFHO model). It is shown that the probabilities of a quantum transition in VV and VT energy exchange of polyatomic molecules can be calculated in terms of the quantum transition probability for VT energy exchange of diatomic molecules on the assumption of “frozen” quantum transitions of polyatomic molecules. The problem of determining the dissociation rate constant is considered by the example of a nitrogen molecule (N2) in the N2–N2 system for the “improved” Lennard-Jones potential in VV energy exchange. The calculated dissociation rate constant is compared with the experimental data obtained for a shock tube.  相似文献   

7.
Cell cultures of Arabidopsis thaliana (A.t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.  相似文献   

8.
The pressure-induced intrinsic effects in the CuO2 plane within the van Hove singularity (VHS) scenario is combined with the modified two-dimensional (2D) lattice gas phenomenology for the basal plane to model the complex structure of the hole-doping dependence of the pressure derivatives of T c of YBa2Cu3O6+x. The experimentally observed structure is found to be reproduced reasonably satisfactorily in the present formalism. This shows that the pressure-induced changes in the CuO2 plane and the oxygen ordering in the basal plane both play important roles in explaining the doping dependent pressure derivative of T c .  相似文献   

9.
The recent discovery of superconductivity in a metallic aromatic hydrocarbon, alkali-doped p-terphenyl, has attracted considerable interest. The critical temperature T c ranges from few to 123 K, the record for organic superconductors, due to uncontrolled competition of multiple phases and dopants concentrations. In the proposed mechanism of Fano resonance in a superlattice of quantum wires with coexisting polarons and Fermi particles, the lattice properties play a key role. Here, we report a study of the temperature evolution of the parent compound p-terphenyl crystal structure proposed to be made of a self-assembled supramolecular network of nanoscale nanoribbons. Using temperature-dependent synchrotron X-ray diffraction, we report the anisotropic thermal expansion in the ab plane, which supports the presence of a nanoscale network of one-dimensional nanoribbons running in the b-axis direction in the P21/a structure. Below the enantiotropic phase transition at 193 K, the order parameter of the C-1 structure follows a power law behavior with the critical exponent α =?0.34 ± 0.02 and the thermal expansion of the a-axis and b-axis show major changes supporting the formation of a two-dimensional bonds network. The large temperature range of the orientation fluctuations in a double well potential of the central phenyl has been determined.  相似文献   

10.
The dynamic properties of the triangular Ising ferromagnet consisting of the mixed spins A = 1/2, B = 1/2, and C = 1 is studied by using the mean-field theory (MFT) as well as Glauber-type stochastic dynamics (GSD). The coupling equations to investigate dynamic behaviors of the system are calculated, and phase transitions, phase diagrams, and hysteresis curves are obtained. From these studies, first- and second-order transition lines, the dynamic phase diagrams (DPDs) in the (T,h 0) and (T,d) planes, and single hysteresis curves are presented. In the DPDs, dynamic tricritical point due to the first- and second-order phase transitions are observed. It is found that the dynamic hysteresis properties of the triangular system strongly depend on the temperature and crystal field.  相似文献   

11.
M. Hermanns  E. Cramer 《TEST》2018,27(4):787-810
A system with n independent components which works if and only if a least k of its n components work is called a k-out-of-n system. For exponentially distributed component lifetimes, we obtain point and interval estimators for the scale parameter of the component lifetime distribution of a k-out-of-n system when the system failure time is observed only. In particular, we prove that the maximum likelihood estimator (MLE) of the scale parameter based on progressively Type-II censored system lifetimes is unique. Further, we propose a fixed-point iteration procedure to compute the MLE for k-out-of-n systems data. In addition, we illustrate that the Newton–Raphson method does not converge for any initial value. Finally, exact confidence intervals for the scale parameter are constructed based on progressively Type-II censored system lifetimes.  相似文献   

12.
In the BCS framework, exact expressions for the ratio between the jump in the specific heat at T c and the normal phase specific heat are derived within the Van Hove singularity scenario. Analytical results are obtained for an isotropic s-wave and anisotropic d-wave pairing symmetries. Graphical solutions of the ratio as functions of ω D /T c and E F /T c , where ω D is the cutoff energy and E F is the Fermi energy, show significant deviations from the BCS value of 1.43.  相似文献   

13.
14.
We have studied electroluminescence in n-GaSb/n-AlGaAsSb/n-GaInAsSb heterostructures with isotype heterojunctions, in which the quantum efficiency of emission is increased due to the additional production of electron-hole pairs as a result of the impact ionization that takes place near the heterointerface. The impact ionization in such heterostructures is possible due to the presence of deep wells in the energy band structure.  相似文献   

15.
A topological mechanism of hole localization as two skyrmions in the CuO2 layers of high-T c superconductors is suggested on the basis of a nonlinear σ model.  相似文献   

16.
We report an easy and versatile route for the synthesis of the parent phase of the newest superconducting wonder material, i.e., p-terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120 K. For crystal growth, the commercially available p-terphenyl powder is pelletized, encapsulated in an evacuated (10?4 Torr) quartz tube and subjected to high-temperature (260 °C) melt followed by slow cooling at 5 °C/h. A simple temperature-controlled heating furnace is used during the process. The obtained crystal is one piece, shiny, and plate like. Single crystal surface XRD (X-ray diffraction) showed unidirectional (00l) lines, indicating that the crystal is grown along the c-direction. Powder XRD of the specimen showed that as grown p-terphenyl is crystallized in monoclinic structure with space group P2 1/a space group, having lattice parameters a = 7.672 (2) Å, b = 5.772 (5) Å, and c = 13.526(3) Å and β = 91.484 (3)°. Scanning electron microscopy (SEM) pictures of the crystal showed clear layered slab-like growth without any visible contamination from oxygen. Characteristic reported Raman active modes related to C–C–C bending, C–H bending, C–C stretching, and C–H stretching vibrations are seen clearly for the studied p-terphenyl crystal. The physical properties of the crystal are yet underway. The short letter reports an easy and versatile crystal growth method for obtaining quality p-terphenyl. The same growth method may probably be applied to doped p-terphenyl and to subsequently achieve superconductivity to the tune of as high 120 K for the newest superconductivity wonder, i.e., high- T c organic superconductor (HTOS).  相似文献   

17.
Thermodynamic modeling of the chemical vapor deposition of boron-carbonitride-based films in the B-C-N-H-O system using mixtures of N-trimethylborazine and nitrogen is carried out for reduced pressures (13.3 and 1.33 Pa) and a wide temperature range (300–1300 K). The source of oxygen impurities in this system is a residual pressure of 0.40 Pa. The results indicate that films of various compositions can be grown. The conditions for the deposition of BC x N y films are identified.  相似文献   

18.
We present a quantum-mechanical first-principle calculation of the structural, elastic, electronic, and magnetic properties of the full-Heusler compounds Ti2NiX (X= Al, Ga, and In). The calculation uses the full-potential linearized augmented plane waves plus local orbital method to describe Ti2-based Heusler alloys. The results show that these compounds exhibit half metallic characteristics over a wide range of mesh parameters and obey the Slater–Pauling rule, which states that the total magnetic moment per unit cell M t = Z t? 18 for half-Heusler compounds XYZ and M t = Z t? 24 for full-Heusler X 2 YZ compounds. For these new alloys Ti2NiX (X= Al, Ga, and In), we initially considered the two possible L21 structures AlCu2Mn and CuHg2Ti. However, two subsequent structural studies showed that only the CuHg2Ti-like structure is half metallic. Over a wide range of mesh parameters, the calculations give a total magnetic moment of 3.00 μ B. These results suggest that Ti2NiX (X= Al, Ga, and In) are promising materials for spintronic applications.  相似文献   

19.
We have analyzed experimental data on the effect of short-term melting followed by recrystallization on the microstructure and critical current density of YBa2Cu3O7 ? x , Bi2Sr2CaCu2O8 ? x , and Bi2Sr2Ca2Cu3O10 ? x high-T c ceramics. The ceramics were melted using different heat sources: infrared lamps, laser radiation, and electric current. A significant increase in the critical current density of Bi2Sr2Ca2Cu3O10 ? x ceramics (by a factor of 40 at 20 K and by a factor of 8 at 77 K) was achieved using cw CO2 laser irradiation. Melting TiC-doped (0.1%) Bi2Sr2Ca2Cu3O10 ? x ceramics with a CO2 laser, followed by annealing, insured an even larger increase in critical current density: by a factor of 35 at 77 K. We have calculated the thickness of the molten layer produced by laser heating of high-T c ceramics.  相似文献   

20.
We have reviewed the methods of extracting current density dependence of the effective activation energy Ueff(J) from experimental data, including transport measurements and magnetic relaxations. Then we applied the method proposed by Maley etc. on our single-phase HgBaCaCuO-1223 sample to obtain the effective activation energy. The effective activation energy Ueff(J, H = 1~T) is extracted from the magnetization relaxation data. On the other hand, Ueff(J) can be theoretically estimated for the model of a sinusoidal washboard potential in superconductors. By comparing the two results we believe that the single curve obtained in the former way can be seen as real current density dependence of effective activation energy Ueff(J). In addition, we have analyzed the reasons why the magnetic decay data at various temperatures can be scaled onto a single curve. The pinning mechanism in the measured temperature range does not change, and the activation energy depends separately on the three variables: T, B, and J are thought as two important factors for this. In the temperature close to zero and near Tc, thermally assisted flux motion would no longer valid since other processes predominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号