首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
Nd: KGd (WO4)2激光晶体生长   总被引:5,自引:5,他引:5  
以K2W2O7为助熔剂,采用熔盐顶部籽晶(TSSG)法生长出尺寸为23mm×20mm×19mm的NdKGd(WO4)2激光晶体.比较了K2WO4和K2W2O7两种助熔剂的性能及对晶体生长的影响,认为K2W2O7熔点较低可以有效地降低晶体生长温度,有利于控制晶体生长和生长环境进行了KGd(WO4)2-KNd(WO4)2系统二元相图的研究,认为两者互溶性好,有利于晶体生长,并且Nd3+易于以化学剂量比取代Gd3+采用XRD、偏光显微镜及TG-DTA对晶体性能进行了研究,实验表明所生长的晶体为高温相的β-NdKGW.用光学显微镜对晶体表面裂纹、生长条纹、生长丘、生长台阶和包裹物等缺陷进行了观察,认为它们形成的原因是由于晶体生长工艺不稳定,温度梯度过大,拉速和降温速率过快.  相似文献   

2.
低阈值激光自倍频晶体Nd:GdCa4O(BO3)3   总被引:1,自引:0,他引:1  
利用提拉法生长出大尺寸、高质量的激光自倍频晶体Nd:GdCa4O(BO3)3 (Nd:GdCOB).测量了Nd:GdCOB晶体的室温偏振透过谱及荧光谱,计算了其在530 nm和811 nm处沿不同主轴的吸收截面.利用电光调Q-Nd:YAG激光器,首次测试得出晶体位于XY主平面外的(θ=66.8°,φ=132.6°)位相匹配方向的有效倍频系数为2.1 pm/V;而在XY主平面内(θ=90°,φ=46°)的方向为0.7 pm/V.通过计算和实验比较,认为前者位相匹配方向为最佳倍频方向.用钛宝石连续激光器对这两个方向的样品进行自倍频实验,在520 mW的输入功率时获得绿光输出为11.3 mW,光-光转换效率为2.3%,激光阈值低于1 mW.目前θ=66.8°,φ=132.6°匹配方向在大功率钛宝石泵浦下,转换效率可以达到14.4%.  相似文献   

3.
以CaB4O7为助熔剂生长出尺寸为31 mm×32 mm×12 mm、质量较好的掺Yb3+的摩尔分数分别为10%,15%的Yb3+∶La2CaB10O19(Yb3+∶LCB)单晶,生长工艺参数是降温速率<0.5 ℃/d,转速<12 r/min.测试了晶体的X射线粉末衍射谱、透射光谱和粉末倍频效应,结果表明Yb3+∶LCB晶体的粉末衍射峰与LCB的衍射峰一致;Yb3+∶LCB晶体在925, 975 nm附近有明显的吸收峰,其中975 nm附近吸收很强;倍频效应与KDP同一量级.  相似文献   

4.
以K2 W2 O7为助熔剂 ,采用熔盐顶部籽晶 (TSSG)法生长出尺寸为 2 3mm× 2 0mm× 19mm的Nd∶KGd(WO4) 2 激光晶体 .比较了K2 WO4和K2 W2 O7两种助熔剂的性能及对晶体生长的影响 ,认为K2 W2 O7熔点较低可以有效地降低晶体生长温度 ,有利于控制晶体生长和生长环境 .进行了KGd(WO4) 2 -KNd(WO4) 2 系统二元相图的研究 ,认为两者互溶性好 ,有利于晶体生长 ,并且Nd3+ 易于以化学剂量比取代Gd3+ .采用XRD、偏光显微镜及TG -DTA对晶体性能进行了研究 ,实验表明所生长的晶体为高温相的 β -Nd∶KGW .用光学显微镜对晶体表面裂纹、生长条纹、生长丘、生长台阶和包裹物等缺陷进行了观察 ,认为它们形成的原因是由于晶体生长工艺不稳定 ,温度梯度过大 ,拉速和降温速率过快  相似文献   

5.
采用泡生法(Kyropoulos method)生长了稀土掺杂钨酸镱钾[RE:KYb(WO4)2,RE=Nd3+,Er3+]激光晶体,并对其结构特性进行了研究。RE:KYb(WO4)2晶体是由WO6,REO8和KO123种基团组成,W2O10二聚体通过WOW单氧桥相连,在平行于c轴方向上形成(W2O8)n多重带。REO8和KO12多面体共顶相连,沿[101]和[110]方向形成了具有二维层结构的延长带。X射线粉末衍射分析表明:Nd3+:KYb(WO4)2和Er3+:KYb(WO4)2两种晶体具有低温β相RE:KYb(WO4)2结构,属于单斜晶系,空间群为C2/c,计算了晶格常数。晶体红外光谱测试结果表明:在630~930cm-1范围存在5个较强的红外吸收峰,这些吸收峰是由WO4基团的伸缩振动引起的。最后,对峰值与相应的振动模式进行了归属,证实了晶体中WOOW双氧桥和WOW单氧桥键的存在。  相似文献   

6.
采用助熔剂法生长了0.5%(质量分数,下同)Cr4+:Ca2GeO4激光晶体。用X射线衍射(X-ray diffractometer,XRD)、吸收光谱及荧光光谱研究了晶体的相组成和光谱性能。XRD分析表明,获得的晶体为低温γ-Ca2GeO4相,镁橄榄石结构,空间群为Pbam。光谱分析表明:Cr4+:Ca2GeO4晶体在600~800 nm范围内的吸收峰对应Cr4+的3A2→3T1能级跃迁;晶体在1 000~1 200 nm的近红外区域的弱吸收带归因于Cr4+离子的3A2→3T2能级跃迁。室温下0.5%Cr4+:Ca2GeO4晶体荧光光谱的最强荧光发射峰值位于1 317 nm处,这归属于Cr4+的3T2→3A2能级跃迁,荧光寿命为7.9μs,发射截面为4.61×10–19 cm2。  相似文献   

7.
以CaB4O7为助熔剂生长出尺寸为31 mm×32 mm×12 mm、质量较好的掺Yb3+的摩尔分数分别为10%,15%的Yb3+∶La2CaB10O19(Yb3+∶LCB)单晶,生长工艺参数是:降温速率<0.5 ℃/d,转速<12 r/min.测试了晶体的X射线粉末衍射谱、透射光谱和粉末倍频效应,结果表明:Yb3+∶LCB晶体的粉末衍射峰与LCB的衍射峰一致;Yb3+∶LCB晶体在925, 975 nm附近有明显的吸收峰,其中975 nm附近吸收很强;倍频效应与KDP同一量级.  相似文献   

8.
在CaO-Li2O-B2O3助熔体系中,生长了掺铒和镱的硼酸钙镧(Er3 :Yb3 :La2CaB10O19,Er:Yb:LCB)晶体.Er:Yb:LCB晶体中Er3 ,Yb3 的分凝系数分别为0.50,0.25.X射线衍射分析表明:Er:Yb:LCB和LCB具有相同的晶体结构.Er:Yb:LCB晶体的熔点大约为1046℃.Er:Yb:LCB晶体的吸收光谱和荧光光谱的测试结果表明:与Er:LCB相比,Er:Yb:LCB晶体在970 nm的吸收系数显著提高,在1 531 nm的发射强度也显著增强,其荧光寿命为0.48 ms.  相似文献   

9.
采用提拉法生长掺钕钆镓石榴石(neodymium-doped gadolinium gallium garnet,Nd:GGG)激光晶体,选择最佳工艺参数:提拉速率为2~4mm/h;转速为20~40r/min;冷却速率为20℃/h。测试了晶体的吸收和荧光光谱,结果表明:主吸收峰位于808nm,主发射峰位于9430cm^–1,对应于Nd3+的4F3/2–4I11/2跃迁。对晶体样品进行了激光性能测试。结果表明:当泵浦功率为900mW时,对泵浦光的吸收效率为85%,激光输出波长约为1μm,激光输出功率为305mW,激光阈值功率为380mW,光–光转换效率达57.8%,斜效率达57.6%。  相似文献   

10.
以K2W2O7为助熔剂,Tm3+掺杂摩尔分数为8%,采用顶部籽晶提拉法生长出了单斜晶系的铥掺杂钨酸镱钾[Tm3+:KYb(WO4)2,Tm:KYbW]晶体.测试了晶体的红外光谱和Raman光谱,并对出现的峰值进行了振动归属.测量了晶体的吸收光谱和荧光光谱,计算了相应的光谱参数.吸收光谱显示:Yb3+在945,958nm处吸收峰最强,半峰宽为91 nm.荧光光谱表明:Tm:KYbW晶体在1 735nnl和1 759nm附近有较强的发射峰,主峰1 759nm处的发射线宽达146nm,因此,Tm:KYbW晶体可作为可调谐激光增益介质.晶体的上转换荧光谱表明:在481 nm和646nm处分别得到了上转换蓝光和红光,并分析了相应的上转换机制.  相似文献   

11.
采用提拉法生长掺钕钆镓石榴石(neodymium-doped gadolinium gallium garnet, Nd: GGG)激光晶体,选择最佳工艺参数:提拉速率为2~4mm/h:转速为20~40r/min;冷却速率为20℃/h.测试了晶体的吸收和荧光光谱,结果表明:主吸收峰位于808nm,主发射峰位于9430cm-1,对应于Nd3 的4F3/1-4I11/2跃迁.对晶体样品进行了激光性能测试.结果表明:当泵浦功率为900mW时,对泵浦光的吸收效率为85%,激光输出波长约为1μm,激光输出功率为305mW,激光阈值功率为380mW,光-光转换效率达57.8%,斜效率达57.6%.  相似文献   

12.
采用提拉法生长了尺寸为φ(30~35)mm×80mm的掺钕钨酸钆钠[Nd:NaGd(WO4)2,Nd:NGW]晶体。生长Nd:NGW晶体的最佳工艺参数为:晶体的提拉速率为1~2mm/h,晶体转速为15~18r/min,冷却速率为10℃/h,液面上轴向温度梯度为0.7~1℃/mm。通过热重-差热分析(thermogravimetry-differential thermal analysis,TG-DTA),X射线衍射(X-ray diffraction,XRD)对晶体进行表征。测试了晶体的红外及Raman光谱,分析了晶体的振动模式,并将晶体振动光谱进行归属。由TG-DTA曲线得到晶体熔点为1251.7℃。XRD分析表明:晶体属于四方晶系、白钨矿结构、I41/a空间群,晶胞参数a=0.53213nm,c=1.13070nm。吸收光谱表明:Nd:NGW晶体在805nm附近有较强、较宽的吸收峰,吸收截面积为3.581×10-20cm2,适合于激光二极管泵浦。  相似文献   

13.
采用顶部籽晶提拉法生长出铒镱共掺钨酸钆钾[Er3 :Yb3 :KGd(WO4)2,Er:Yb:KGW]激光晶体.这种晶体的最佳生长工艺参数为:转速为10~15 r/min,提拉速率为1~2mm/d,降温速率为0.05~0.1℃/h,生长周期为10~15d.X射线衍射分析表明,所生长的晶体为β-Er:Yb:KGW.经热重-差热分析确定:晶体的熔点为1 079℃,相转变温度为1 024℃.测量晶体的红外及Raman光谱,并对峰值及相应的原子基团振动进行了归属.晶体样品的吸收光谱显示:在380,523,935 nm和981 nm处存在较强的吸收峰,主峰981 nm处的吸收截面积为3.35×10-20 cm2.分别在488 nm和980 nm波长光激发下,均可以产生较强的1.53 μm对人眼安全的激光,表明Yb3 对Er3 具有敏化作用,既提高了对泵浦光的吸收效率,又降低了激光振荡阈值.  相似文献   

14.
用顶部籽晶提拉法(top seeded solution growth,TSSG)生长出Ybx:KY1-x(WO4)2(x=5%,摩尔分数,下同)和KYb(WO4)2晶体,比较了两者的结构和光谱性能.工艺参数:转速为10-15 r/min,提拉速率为1-2mm/d,生长周期为10-15d,降温生长速率为O.05-0.1℃/h,降温速率为20℃/h.X射线衍射分析表明:两者均为低温相的β-KYW结构,计算了2种晶体的晶格常数.测试了红外及Raman光谱,Ybx:KY1-xW(x=5%)样品在925,891,840,777,749 cm-1具有较强的红外吸收峰,是由WO4原子基团伸缩振动引起的;KYbW样品在484,437 cm-1处具有较强的红外吸收峰,反映了WO4原子基团的弯曲振动.分析了晶体的振动模式,认为2种晶体有较强的Raman活性,钨氧双桥键WOOW和单桥键WOW基团的振动在200~1 000cm-1范围内,对峰值与相应的振动进行了指认.  相似文献   

15.
铒镱共掺钨酸钆钾激光晶体的光谱性能及光谱参数计算   总被引:1,自引:1,他引:0  
采用顶部籽晶溶液法生长出铒镱共掺钨酸钆钾[Er3+:Yb3+:KGd(WO4)2,Er:Yb:KGW]激光晶体.测量了晶体的红外光谱、Raman光谱、吸收光谱和发射光谱,分析了晶体的振动模式,并对晶体振动光谱进行归属.利用Judd-Ofelt理论计算晶体的吸收及发射截面、强度参数、辐射跃迁几率、荧光分支比和荧光寿命等光谱参数.结果表明:Er:Yb:KGW晶体在380,523,935nm和981nm处存在较强的吸收峰,主峰981nm处的吸收截面为 3.35×10-20cm2.强度参数为Ω2=1.0729×10-20cm2,Ω4=1.2956×10-20cm2,:Ω6=0.933 5×10 20cm2.用488nm和980nm波长激发晶体,得到较强的1.53μm人眼安全波段激光,由于Yb3+对Er33+的敏化作用不级可以提高泵浦光的吸收效率,而且可以降低激光振荡阈值.  相似文献   

16.
激光新材料Nd^3^+:Li6Y(BO3)3晶体的助熔剂生长   总被引:1,自引:0,他引:1  
合成出不同Nd^3^+掺杂浓度的LYB系列粉末样品,进行了荧光测试。用差热分析法测定了熔体的生长温度曲线。用助熔剂法生长出尺寸为65mm×30mm×3mm的Nd^3^+:LiY(BO3)3晶体。  相似文献   

17.
氟化钙晶体的生长和应用研究   总被引:3,自引:0,他引:3  
CaF2晶体作为一种传统晶体材料,应用十分广泛。文中综合介绍了CaF2晶体在深紫外光刻机的光学元件、激光晶体和被动Q开关三个领域的应用现状及趋势,归总了CaF2晶体具有的优异性能,阐述了CaF2晶体与深紫外准分子激光之间的作用,晶体结构对激光性能的影响,晶体生长和加工等诸多方面的研究进展。  相似文献   

18.
采用熔盐法生长了15×44×34mm的磷酸钛氧铷单晶。报道了它的XRD数据、折射率、位相匹配曲线、电光系数、介电常数、铁电相变,电导率及自发电流现象。介电常数随温度的变化显示了二缎相变发生在829±1℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号