首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
车轴表面粗糙度的大小对其使用性能有很大的影响,为了优化车轴表面粗糙度,保证车轴表面完整性要求,通过试验方法对材料为20Cr Mn Ti的车轴进行了试验分析,对在不同磨削工艺参数下的试件表面粗糙度进行了考察,得出了表面粗糙度随各磨削工艺参数的变化规律,并结合实际工艺条件给出了最优的工艺参数匹配。  相似文献   

2.
高速磨削砂轮磨损对磨削表面质量的影响研究   总被引:1,自引:0,他引:1  
基于陶瓷CBN砂轮对渗碳钢20Cr Mn Ti开展了高速外圆磨削试验。在外圆磨削余量和工艺参数固定的情况下对工件进行连续磨削,以工件上的磨除体积为砂轮磨损指标,考察了砂轮磨损对工件表面粗糙度、残余应力、表层金相组织和显微硬度变化的影响。实验结果表明工件表面粗糙度会随着砂轮磨损而上升,表面残余应力随着砂轮磨损逐渐呈现拉应力的趋势,磨削表面会出现回火软化变质层。该结果可为进一步研究高速磨削机理及优化工艺参数提供依据。  相似文献   

3.
基于P20模具钢数控球刀铣削试验,对表面粗糙度的影响因素进行了研究。在试验数据极差分析的基础上得出了如下结论:加工残留高度是球刀铣削粗糙度最重要的影响因素。基于试验数据,利用最小二乘多元线性回归方法,推导并求解出P20模具钢球刀铣削粗糙度的数学模型。利用最优化设计方法和MATLAB优化工具箱,以加工效率为目标函数和以粗糙度预测模型为约束条件,针对实际的问题优选了铣削工艺参数。优化的工艺参数在保证表面加工质量的基础上可大幅提高加工效率,这为数控加工企业降低生产成本提供了重要的理论依据和案例参考。  相似文献   

4.
砂带磨削表面粗糙度理论预测及灵敏度分析   总被引:1,自引:0,他引:1  
高超  王生  王会  刘广照  吴国荣 《表面技术》2018,47(11):295-305
目的 以钢化玻璃磨边为研究对象,建立金刚石砂带磨削表面粗糙度理论预测模型,并分析粗糙度对各工艺因素的灵敏度。方法 首先,采用多因素线性回归分析建立了关于磨削工艺参数的粗糙度理论预测模型;其次,通过正交试验研究了磨削压力、砂带线速度和砂带张紧力对粗糙度和材料去除率的影响大小,并得到了工艺参数的优水平组合;再次,根据正交试验结果计算了粗糙度理论预测模型的数学表达式,同时,建立了灵敏度模型来进行工艺因素的灵敏度分析和工艺参数的区间优化;最后,利用随机试验验证了粗糙度理论预测模型的准确性。结果 极差分析可知,RA(0.137)?RC(0.068)?RB(0.016),MC(6.828)?MA(5.228)?MB(1.784),磨削工艺参数的优水平组合为A2B3C3。电镀金刚石砂带磨削表面粗糙度理论预测模型的表达式为 。各工艺参数的优选区间为:磨削压力10~20 N,线速度15~30 m/s,张紧力40~60 N。随机试验可得,粗糙度理论预测模型的相对误差大小维持在5.5%~10%。结论 关于工艺因素对磨削质量的影响,磨削压力最大,砂带张紧力次之,砂带线速度最小。关于工艺因素对材料去除率的影响,砂带张紧力最大,磨削压力次之,砂带线速度最小。磨削压力为18 N、砂带线速度为30 m/s、砂带张紧力为55 N时,磨削表面质量最好,且材料去除率较高。试验参数范围内,粗糙度对磨削压力的灵敏度随磨削压力的增加而下降,对砂带线速度和砂带张紧力的灵敏度随着二者的增加而增加。15组随机试验表明,粗糙度理论预测模型具有较高的可靠性和准确性。  相似文献   

5.
基于RBF神经网络的磨削表面粗糙度预测模型   总被引:1,自引:0,他引:1  
工件表面粗糙度是反映表面完整性指标中极为重要的一个参数,也是衡量磨削加工质量的重要因素之一,准确地预测磨削表面粗糙度对于快速合理地选择磨削加工工艺参数具有重要意义。通过开展实际磨削实验获得磨削加工数据,对获取的样本数据进行归一化处理以适应RBF神经网络的学习。同时采用循环算法比较得出隐层的最优神经元个数,最终建立了基于径向基函数神经网络的磨削表面粗糙度预测模型,并利用MATLAB进行仿真预测。仿真结果表明:该预测模型准确率很高,能为表面粗糙度预测研究提供可靠数据。  相似文献   

6.
肖军民 《热加工工艺》2015,(6):136-137,141
为了降低W6Mo5Cr4V2高速钢材料电火花加工的成本,在保证加工表面质量的基础上提高加工效率。本文利用电火花加工试验数据,利用多元回归方法推导并求解出了W6Mo5Cr4V2高速钢电火花材料去除率和表面粗糙度的预测模型。基于预测模型利用统一目标函数法构造了新的目标评价函数,采用序列二次规划法针对实际的加工问题优选了工艺参数。优化的工艺参数在保证表面加工质量的基础上能提高加工效率,这为加工企业降低生产成本提供了重要的理论依据。  相似文献   

7.
摆动磨削作为一种精密磨削技术,在凸轮型面磨削中体现了较强的优越性。然而目前对摆动磨削技术研究不够深入,对摆动磨削方式下各磨削参数的匹配研究不够系统。为充分发挥摆动磨削的技术优势,实现摆动磨削参数和其他参数的深度融合,以40Cr钢凸轮轴为试验材料,采用灰色关联分析法探究摆动磨削加工表面粗糙度参数Ra、Rz和Rsm。基于灰色关联理论,对测得的粗糙度结果进行深入分析,将多工艺指标的优化问题转化为单一目标的灰色关联度优化问题,得出了最优工艺参数组合为磨削深度0.003 mm、工件转速2 600 mm/min、摆动频率60次/min和摆动幅度1.5 mm。经过试验验证,该工艺参数组合能够获得更理想的磨削表面质量。  相似文献   

8.
目的 利用ELID磨削技术对ZGMn13Cr2高锰钢进行精密超精密镜面磨削加工试验研究,解决其加工性能差的问题,以提升表面质量,采用二次回归通用旋转设计试验,探究不同试验因素对ZGMn13Cr2高锰钢加工表面质量的影响规律,并对各因素工艺参数进行优化。方法 对MSG-612 CNC超精密成型平面磨床进行ELID磨削工艺模块化改造后,采用240#、W10粒度的金属结合剂金刚石砂轮对直径f50 mm、厚度10 mm的样件进行ELID磨削加工,对比两种粒度砂轮的加工效果。应用二次回归通用旋转设计进行工艺试验,搭建表面粗糙度二次回归数学模型,探究不同试验因素对工件表面质量的影响程度,使用判定系数R2检验二次回归模型对实际情况的拟合程度。最后,由lingo软件对二次回归数学模型进行优化,得出ZGMn13Cr2高锰钢ELID磨削各试验因素工艺参数的最佳组合。结果 经W10金属结合剂金刚石砂轮加工后,样件获得较高精度的镜面效果,两种粒度所加工的样件表面均无烧伤。判定系数R2检验二次回归模型对实际情况的拟合度为99.24%,模型的预测结果对实际加工有指导意义。优化得出的最佳工艺参数组合为:砂轮线速度35 m/s,电解电压90 V,砂轮进给量2 μm,电解间隙0.734 mm。结论 ELID精密超精密镜面磨削加工技术可大幅提高ZGMn13Cr2高锰钢的加工效率和加工精度,减少工件表面烧伤,在高锰钢磨削加工方面具有良好的应用价值。  相似文献   

9.
为探究纵-扭超声振动对陶瓷磨削表面几何形貌的影响,以ZrO2陶瓷为研究对象,通过正交对比试验,以磨削表面粗糙度值为评价指标,采用多元线性回归分析法,建立普通磨削(OG)及纵-扭超声磨削(L-TUG)材料表面粗糙度拟合模型,研究工艺参数对表面粗糙度作用的主次顺序及影响程度;同时利用BP神经网络预测模型进行L-TUG表面粗糙度的优化求解。结果表明:在L-TUG中,主轴转速对粗糙度值影响最大,超声能量影响最小;在OG中,磨削深度对粗糙度值影响最大,主轴转速影响最小。BP神经网络模型预测误差在1.070%~9.396%内,且最优磨削参数组合获得的表面质量最好,可实现对L-TUG表面粗糙度值较高精度的智能预测。  相似文献   

10.
陶瓷结合金刚石砂轮磨削硬质合金表面粗糙度的研究   总被引:1,自引:0,他引:1  
本文采用正交试验法研究了砂轮线速度、横向进给速度、磨削深度和磨削行程四种磨削参数对陶瓷结合金刚石砂轮磨削硬质合金表面粗糙度的影响,通过显微镜观察了硬质合金的表面加工质量,分析了影响表面加工质量的因素,得出了优化的工艺参数.结果表明:四种磨削参数对硬质合金表面粗糙度的影响顺序为:横向进给速度>砂轮线速度>砂轮行程>磨削深...  相似文献   

11.
20CrMnTi是一种广泛应用于齿轮制造的材料。为提高20CrMnTi精加工的表面质量、加工效率,以车削20CrMnTi钢的表面粗糙度为研究对象,设计正交试验,在数控车床GENOS L250E上进行硬质合金刀具车削试验,探究切削参数(切削速度、进给量、背吃刀量)对表面粗糙度的影响。并通过多元回归建立切削参数与表面粗糙度的关系模型,从而构建以加工效率、表面粗糙度为目标的多目标优化模型,通过粒子群算法对切削参数进行优化。试验结果表明:使用优化后的切削参数加工可以减小表面粗糙度、提高加工效率。  相似文献   

12.
氮化硅陶瓷磨削表面质量的建模与预测   总被引:2,自引:0,他引:2  
吴玉厚  王浩  孙健  王贺  李颂华 《表面技术》2020,49(3):281-289
目的提升氮化硅陶瓷加工质量和效率,提高粗糙度模型预测精度。方法提出塑性与塑-脆性去除转变临界切深hc1和塑-脆性与脆性转变临界切深hc2,然后对原有模型进行修正,并引入塑性去除粗糙度修正系数φ1、τ1和塑-脆性去除粗糙度修正系数φ2、τ2,建立基于不同去除方式的粗糙度Ra预测模型,后通过磨削实验对系数进行求解,并得出磨削参数对粗糙度和表面形貌的影响。结果塑性去除粗糙度修正系数φ1=5.872×10^-6、τ1=0.1094,塑-脆性去除粗糙度修正系数φ2=1.299×10^-5、τ^2=0.1582。砂轮线速度vs由30 m/s增大到50 m/s,粗糙度Ra由0.366μm减小到0.266μm,去除方式由脆性断裂向塑性变形转变,表面质量变好。磨削深度ap由5μm增大到45μm,粗糙度Ra由0.252μm增大到0.345μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。工件进给速度vw由1000 mm/min增大到9000 mm/min,粗糙度Ra由0.227μm增大到0.572μm,去除方式由塑性变形向脆性断裂转变,表面质量变差。模型预测值与实验值的相对误差δ在2.1%~8%之间。结论在加工中应控制磨削深度和工件进给速度,适当提高砂轮线速度,以保证加工精度和效率。基于不同去除方式的粗糙度预测模型,可较为精准地预测实际加工情况。  相似文献   

13.
目的优化安全阀关闭件研磨工艺参数,提高安全阀密封面研磨质量。方法采用Al2O3砂纸为磨具,通过正交试验研究了磨粒细度、研磨时间、研磨转速、研磨压力对阀座和阀瓣表面粗糙度的影响规律。采用粗糙度测量仪对阀座和阀瓣的表面粗糙度进行检测,初步获得了较好的研磨工艺参数。采用MATLAB中BP神经网络解决非线性映射逼近问题,建立表面粗糙度预测模型,分析安全阀研磨工艺实验得来的16组真实样本数据,并对不同工艺参数下的粗糙度进行预测。结果通过正交试验可以初步获得较好的研磨工艺参数,分别是:磨粒细度1500目、研磨压力100 N、研磨转速100 r/min、研磨时间10 min。进一步设计更全面的正交试验,验证粗糙度模型的预测结果,得到最好的研磨方案是:砂纸细度1500目、研磨压力120 N、研磨转速80 r/min、研磨时间12 min。结论粗糙度预测模型能够很好地预测表面粗糙度,并得到最佳工艺参数,表面粗糙度可以降低到0.074μm,有效地提高了研磨质量。  相似文献   

14.
齿轮钢30CrMnTi磨削强化试验   总被引:1,自引:0,他引:1  
30CrMnTi钢广泛应用于齿轮的生产制造中,为提高齿轮的抗疲劳性能及探讨磨削工艺参数对其表面强化的影响,开展了齿轮钢30CrMnTi的磨削试验,分析了磨削速度和磨削深度对磨削表面强化层显微组织、强化层深度、表面显微硬度和强化层残余应力的影响规律。结果表明,齿轮钢30CrMnTi磨削加工后得到一定强化层,表面显微组织为针状马氏体、碳化物和少量残余奥氏体,且强化层马氏体组织由磨削表面到心部呈"细—较粗"的变化趋势,硬度先增大后减小,强化层深度随磨削深度或磨削速度的增大而增加,磨削后表面显微硬度提高2%~13%,随磨削速度降低或磨削深度增大而增大。磨削过程对残余应力的影响在表面表现为拉应力,沿层深向内逐渐转化为压应力。磨削表面残余压应力的值随磨削速度或磨削深度的增大而降低。通过合理的磨削参数可实现齿轮钢30CrMnTi的表面磨削强化。  相似文献   

15.
目的为满足安全阀阀座与阀瓣配合面密封要求,提高安全阀密封面磨削修复质量和效率,阀座和阀瓣表面粗糙度Ra≤0.1μm。方法在正交实验的基础上,采用Al_2O_3砂纸、白刚玉研磨膏为磨削介质,研究了磨粒细度、磨削时间、磨削转速、磨削压力对密封表面粗糙度和磨削量的影响,使用粗糙度测量仪、千分尺、电子显微镜对阀座和阀瓣的表面粗糙度、磨削量、表面形貌进行测量分析。以磨削量和表面粗糙度为评价指标,得到最佳工艺参数,并通过多组重复性实验验证实验结果的可靠性。结果在最佳磨削工艺参数下,砂纸研磨阀座和阀瓣的磨削量为0.023 mm,表面粗糙度为0.135μm,研磨膏抛光阀座和阀瓣的表面粗糙度为0.073μm。结论砂纸研磨最佳工艺参数:研磨压力80 N,研磨转速80 r/min,研磨时间10 min,砂纸细度1000目。研磨膏抛光最佳工艺参数:抛光压力30 N,抛光转速100 r/min,抛光时间10 min。采用砂纸、研磨膏磨削修复工艺,可以提高磨削量,降低表面粗糙度,提高了安全阀磨削后的密封性能。  相似文献   

16.
目的 探究工艺参数对螺杆转子砂带磨削表面质量的影响规律.方法 采用工件轴向进给速度为100~300 mm/min、砂带线速度为4.4~13.1 m/s、砂带张紧压力为0.2~0.3 MPa、磨削压力为0.4~0.5 MPa、砂带粒度为120~800目的工艺参数进行螺杆转子砂带磨削正交实验,基于改进的神经网络算法,建立螺...  相似文献   

17.
为进一步提高刀网内平面端面电解磨削的加工质量和加工效率,开展了不同磨头进给方式的对比试验,研究了磨头偏心平动量、偏心平动次数等参数对表面粗糙度和平面度的影响规律,优选出磨头偏心平动圆运动的进给方式。结果表明:在磨头偏心平动的进给方式下,采用偏心平动量0.06 mm、偏心平动次数6~8次的参数重复加工批量刀网,其表面粗糙度均可稳定在Ra0.15~0.2μm、平面度均可稳定在3~5μm,满足刀网内平面较高表面质量的加工要求。  相似文献   

18.
为了研究W-Mo合金材料精密加工的新途径,采用在线电解修整(ELID)精密磨削和超精密研抛技术,对其进行了精密镜面加工实验,分析了此材料超精密镜面表面的形成机理。通过ELID磨削加工得到了表面粗糙度Ra0.020μm加工表面,再以研抛压力为0.1~0.3 N/cm2,转速为60~100 r/min等优化研抛参数进行研抛加工,获得了表面粗糙度为Ra0.012μm精密镜面加工表面。实验表明:ELID精密磨削加工是保证工件表面质量的基础,超精密机械研抛时研抛压力及转速等参数对工件表面质量起主要影响作用。  相似文献   

19.
邓俊秀  朱海清 《表面技术》2016,45(4):198-202,212
目的 提高安全阀阀座与阀瓣的研磨维修质量和工作效率.方法 以砂纸为研磨介质,研究砂纸的细度、研磨压力、研磨机转速、研磨时间、研磨路径对阀座与阀瓣材料去除率与表面粗糙度的影响.通过正交实验,综合考虑各个工艺参数对材料去除率和表面粗糙度的影响,选择最佳工艺.结果 最佳工艺下,安全阀关闭件的材料去除率为26.2μm/min,表面粗糙度为0.028μm,研磨修复效率提高到90%.结论 研磨维修的最佳工艺为:砂纸目数1500目,研磨压力30 N,研磨机转速50 r/min,研磨时间20 min,研磨路径8字形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号