首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了提高轴对称非球面透镜的形状精度,降低其精加工成本,用金刚石小磨头在不同的加工参数和数控走刀轨迹条件下对K9光学玻璃透镜进行铣磨实验加工。透镜的轮廓精度用三坐标测量机测量,通过测量的数据点计算非球面透镜的法向轮廓度误差,并用数控加工时磨头的有效切削半径进行补偿。实验结果表明:当数控走刀轨迹为平行精加工和等高精加工时,加工后非球面透镜的面型精度最大轮廓度偏差PV和误差平均值RMS分别为54.48 μm和22.88 μm、98.46 μm和28.88 μm;通过优化金刚石磨头的有效切削半径可以提高非球面透镜加工的面型精度,平行精加工后优化的非球面透镜面型精度PV和RMS值分别为44.52 μm和7.37 μm。   相似文献   

2.
《锻压技术》2021,46(9):230-236
为提高精密聚合物透镜模组的光学性能,以大直径非球面透镜为研究对象,分析了注射与注射压缩成形工艺透镜面形偏差的差异,并通过透镜模组成像计算研究了透镜面形偏差对模组光学畸变的影响规律。结果表明:注塑成形工艺因素导致透镜面形偏差且分布不均匀,注射压缩成形工艺能够有效降低透镜面形偏差;单个透镜的面形偏差大小与模组光学畸变性能优劣并不完全呈正相关,模组网格畸变与TV畸变随透镜面形偏差的降低而减小。透镜模组中各透镜的光学功能与面形特征相互耦合,仅降低透镜的面形偏差无法提高透镜模组的整体成像性能,需要综合考虑模组中各透镜的功能、性能指标要求与面形特征等因素,建立与具体成像指标相关联的透镜面形偏差评价标准。  相似文献   

3.
为提高课题组自研的超精密磨床加工精度,基于多体系统理论,运用齐次坐标变换原理,分析该超精密磨床37项几何误差来源,对非球面超精密磨削的综合误差建模。超精密磨床的多项几何误差元素已在制造阶段标定、补偿,取砂轮对刀误差和砂轮轮廓半径磨损误差作为主要面形误差来源,分别推导其对综合误差的传递函数,分析误差辨识方法,建立误差修正补偿模型,提出基于直接补偿的点补修正法。试验结果表明:建立的综合误差模型正确,根据误差辨识方法和修正补偿模型,修正误差后面形误差显著降低,有效提高面形精度。  相似文献   

4.
非球面铣磨机的设计及开发   总被引:1,自引:0,他引:1  
介绍了一台适用于非球面镜片加工的数控光学加工机床——数控铣磨机(XM-50)。首先对非球面铣磨机的要求和机械结构的设计以及非球面铣磨机的数控系统的主要特点进行了介绍。然后重点阐述了非球面铣磨机的数控加工算法模块的研制与开发。该数控加工算法模块运用了双圆弧拟合算法,在求解时则采用了结合下降算法(一维直线搜索法)的、具有全局收敛性的牛顿法来求解非线性方程组,该方法为等误差的局部坐标法离散曲线提供了数学保证。最后介绍了用此算法模块软件输出的数控加工程序在铣磨机上对镜片进行的实际切削加工试验。  相似文献   

5.
鉴于薄壁结构件铣削过程中加工变形对面形精度存在不利影响,文章基于有限元分析(FEA)方法研究薄壁件铣削面形误差分布对装夹方案和走刀路径等因素的依赖关系,并分析工件未铣削区域材料残留对铣削变形误差的影响规律。研究结果表明:薄壁结构件的加工变形误差不仅取决于装夹方案和走刀路径,而且还严重依赖于未铣削区域的材料残留,通过合理选取装夹方案和走刀路径可以有效提高薄壁结构件铣削加工的面形精度。  相似文献   

6.
高尚  任佳伟  康仁科  张瑜  李天润 《表面技术》2024,53(3):22-27, 46
目的 为分析弹性磨抛轮磨削硅片面形精度变化的影响因素,优化加工参数以获得良好的磨削面形。 方法 通过建立考虑弹性磨抛轮转速、硅片转速、偏心距等参数的弹性磨抛轮磨粒运动轨迹模型,结合单颗磨粒切削深度,提出了弹性磨抛轮加工硅片的材料去除非均匀性预测方法,建立了基于弹性磨抛轮磨削硅片的面形预测模型,并通过不同转速比下的磨削试验验证了预测模型的准确性。结果 面形预测模型仿真出的面形与弹性磨抛轮加工试验后的硅片面形一致,均呈“凸”形,且PV值随转速比的增大而增大。转速比为1时,磨削后硅片面形PV值为0.54 μm,仿真模型计算出的PV值为0.49 μm,转速比为5时,磨削后硅片面形PV值为2.12 μm,仿真模型计算出的PV值为2.38 μm。结论 磨削试验面形PV值与模型计算面形PV值的预测误差小于13%,建立的面形预测模型能够成功预测硅片的面形规律,可以分析加工参数对硅片面形的影响规律。由面形预测模型分析可知,转速比对硅片面形精度有影响,且随着转速比的增加,硅片面形不断恶化,因此在实际加工中,应选择较小的转速比进行加工,以获得更优的硅片面形精度。  相似文献   

7.
摆座的制造精度影响到透镜的面形精度和加工效率。分析摆座的技术要求,研究摆座的加工工艺,分析位置误差产生的原因,提出相应的解决措施并经过多次实践验证。结果表明,选择适当的夹紧位置可消除夹紧变形对摆座位置精度的影响;确定恰当夹紧力,可使夹紧力对摆座形状精度的影响降到最小。  相似文献   

8.
薄壁零件精密数控铣削关键技术研究   总被引:1,自引:0,他引:1  
针对薄壁零件铣削加工误差产生的主要原因,从制造工艺方面,分析和讨论了薄壁零件数控铣削加工过程中涉及到的工艺路线、走刀策略、切削参数以及装夹方式等对加工质量和加工效率的影响,介绍了减小薄壁零件数控铣削加工变形,指出了提高其加工精度和表面质量的技术方法和工艺措施.  相似文献   

9.
为优化圆弧面砂轮磨削非球面碳化硅反射镜的加工效果,基于往复式磨削对非球面反射镜的残余高度进行建模,通过残余高度与面形精度的几何关系,建立面形精度预测模型并进行仿真分析。面形精度模型仿真结果表明:随截圆弧长增加或倾角增大,面形精度降低;随砂轮基圆半径增加或砂轮圆弧半径增加,面形精度提高。其中,截圆弧长和砂轮基圆半径对面形精度影响较大。   相似文献   

10.
金属线材成形零件种类繁多,其加工成形受到几何参数变化、材料特性等不同因素影响,致使加工精度难以准确控制。针对平面螺旋线材零件的圆弧半径变化现象提出了一种基于迭代思想的误差修正方法。通过分析加工对象的几何特性,建立了线材成形半径、弯曲角度以及线材送料长度三者之间的几何关系模型,建立了加工时送料轴与推弯轴的函数关系;以等半径线材圆弧零件的成形工艺为例,提出了平面螺旋线材的半径误差修正方法,并进行了试验加工,该方法能够有效提高线材加工精度。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号