首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In overmolded flip chip (OM-FC) packaging, interface delamination-particularly at the die/underfill interface-is often expected to be a main type of failure mode. In this paper, a systematic stress analysis is performed by means of numerical simulations for the optimal design of package geometries and materials combinations. The behavior of the interfacial stresses at the die/underfill and die/mold-compound (MC) during the molding process is investigated, followed by a parametric study to examine the effects of the package geometries and materials parameters including the underfill fillet size, die thickness, die size, die standoff height, solder mask design pattern, MC used as underfill material, MC properties, etc., on the interfacial stresses. The results demonstrate that a proper selection of these parameters can mitigate the interfacial stresses, and thus is important for the reliability of the low-cost OM-FC packages.  相似文献   

2.
This research proposes a parametric analysis for a flip chip package with a constraint-layer structure. Previous research has shown that flip-chip type packages with organic substrates require underfill for achieving adequate reliability life. Although underfill encapsulant is needed to improve the reliability of flip chip solder joint interconnects, it will also increase the difficulty of reworkability, increase the packaging cost and decrease the manufacturing throughput. This research is based on the fact that if the thermal mismatch between the silicon die and the organic substrate could be minimized, then the reliability of the solder joint could be accordingly enhanced. This research proposes a structure using a ceramic-like material with CTE close to silicon, mounted on the backside of the substrate to constrain the thermal expansion of the organic substrate. The ceramic-like material could reduce the thermal mismatch between silicon die and substrate, thereby enhancing the reliability life of the solder joint. Furthermore, in order to achieve better reliability design of this flip chip package, a parametric analysis using finite element analysis is performed for package design. The design parameters of the flip chip package include die size, substrate size/material, and constraint-layer size/material, etc. The results show that this constraint-layer structure could make the solder joints of the package achieve the same range of reliability as the conventional underfill material. More importantly, the flip chip package without underfill material could easily solve the reworkability problem, enhance the thermal dissipation capability and also improve the manufacturing throughput  相似文献   

3.
The radio frequency (RF) and high frequency performance of the flip chip interconnects with anisotropic conductive film (ACF) and non-conductive film (NCF) was investigated and compared by measuring the scattering parameters (S-parameters) of the flip chip modules. Low cost electroless-Ni immersion-Au (ENIG) plating was employed to form the bumps for the adhesive bonding. To compare the accurate intrinsic RF performance of the ACF and NCF interconnect without lossy effect of chip and substrate, a de-embedding modeling algorithm was employed. The effects of two chip materials (Si and GaAs), the height of ENIG bumps, and the metal pattern gap between the signal line and ground plane in the coplanar waveguide (CPW) on the RF performance of the flip chip module were also investigated. The transmission properties of the GaAs were markedly improved on those of the Si chip, which was not suitable for the measurement of the S-parameters of the flip chip interconnect. Extracted impedance parameters showed that the RF performance of the flip chip interconnect with NCF was slightly better than that of the interconnect with ACF, mainly due to the capacitive component between the bump and substrate and self inductance of the conductive particle surface in the ACF interconnect.  相似文献   

4.
The paper aims at optimization of the residual thermal-mechanical behaviors of a novel Flip Chip (FC) technology during and after the fabrication process. In this study, we first introduce the novel adhesive-typed FC packaging technology, consisting of a nanocomposite film for anisotropic electrical conduction and a nonconductive paste (NCP) for developing NCP joints. In the optimization work, the material and geometry properties and the bonding process parameters are considered as the design parameters, and the constraints on the residual behaviors and the design parameters are included. To deal with the multi-criteria design optimization problem, an effective metamodeling-based design optimization scheme is applied, which integrates parametric finite element (FE) analysis, a response surface methodology (RSM) and an updating scheme. Moreover, to assess the residual behaviors, a process-dependent simulation methodology that integrates both transient thermal and nonlinear contact FE analyses and a “death-birth” meshing scheme is carried out. The validity of the process-dependent FE simulation methodology is confirmed through experiment. Finally, two design practices are performed, and the calculated optimal designs are compared with each other and with the original design.It turns out that the present optimization methodology can be very effective and robust in seeking the optimal design of the FC technology with a better residual thermal-mechanical performance after the NCP bonding process.  相似文献   

5.
Flip chip technologies have rapidly progressed and widely used in concert with the high speed and small dimension trends in electronic devices. This study performed an optimization design of the bump geometries in order to achieve higher electrical performance. The bump interconnections were considered as partial four-bump system to derive the analytical solution of the characteristic impedance. The first incident voltage determined form the characteristic impedance of the bump was employed as the optimization objective function to reduce the response time delay in the binary command for maintaining the chip level efficiency. The genetic algorithm was used for the search routines to evaluate the optimal solutions of the bump geometries in this research. Two cases of power supply voltages were adopted to conduct the case studying in both air and underfill environments. The optimization results show that a powerful design window for bump interconnections is established.  相似文献   

6.
Thermal analysis of a flip chip ceramic ball grid array (CBGA) package   总被引:2,自引:0,他引:2  
The function of an electronic cooling package is to dissipate heat to ensure proper operation and reliability. The flip chip ball grid array package is probably the most suitable package for high-level thermal performance applications. A high thermal performance flip chip ceramic ball grid array (FC-CBGA) package with an aluminum silicon carbide (AlSiC) lid and one without lid were evaluated using the computational fluid dynamics (CFD) technique. This paper compares the thermal performance of a 35 × 35 mm FC-CBGA package with three different die sizes of 5 × 5 mm, 15 × 15 mm and 20 × 20 mm. The performance of a lid fitted with different heat sinks was investigated in standard JEDEC defined natural and in forced convection environments. Thermal measurements were performed using a functional application specific integrated circuit (ASIC) chip, in compliance with the JEDEC standards. Excellent agreement was found between the numerical results and the measured data. Improved thermal performance was observed with a lidded package as compared to the unlidded one. However, no significant improvement was observed between lidded and unlidded packages when fitted with a heat sink subjected to forced convection. This paper also discusses the package thermal budget estimate with and without heat sinks. Printed circuit board and package top surface temperature patterns were measured using an infrared thermal camera. The usefulness of the thermal characterization parameter is demonstrated in system level applications. Parametric studies were carried out to understand the effect of die size, radiation effect, gird size variations and airflow rate on die junction temperature and package thermal resistance. This study also incorporates the effects of substrate, lid, die and PCB temperatures for different die sizes in natural and forced convection environments.  相似文献   

7.
This study investigated the dynamic variations of flow and meniscus during underfill process using flow visualization techniques to understand physics of capillary flows. For the quantitative flow visualization, a high speed micro particle image velocimetry (μPIV) was applied to a transparent flip chip specimen with arrayed bump structure. As an underfill liquid, glycerin was filled into the flip chip specimen by capillary action. The present visualization technique offers time-varying movement of meniscus and phase-locked velocity fields frozen to the meniscus position. To observe the dynamic contact angle between parallel plates, an in situ measurement technique was developed in the present study. Then, the filling time was compared with analytical models. From this experiment, it was found that the meniscus velocity and the contact angle vary in-phase according to the position of meniscus. The phase-locked velocity fields show velocity gradients on the meniscus surface which gives rise to the breakdown of equilibrium contact angle. Consequently, the detailed filling time has different behavior from the analytical models.  相似文献   

8.
The effect of thermomechanical properties of underfill and compliant interposer materials, such as coefficient of thermal expansion (CTE) and stiffness (Young's modulus) on reliability of flip chip on board (FCOB) and chip scale packages (CSPs) under thermal cycling stresses is investigated in this study. Quasi-three-dimensional viscoplastic stress analysis using finite element modeling (FEM) is combined with an energy partitioning (EP) model for creep-fatigue damage accumulation to predict the fatigue durability for a given thermal cycle. Parametric FEM simulations are performed for five different CTEs and five different stiffnesses of the underfill and compliant interposer materials. The creep work dissipation due to thermal cycling is estimated with quasi 3-D model, while 3-D model is used to estimate the hydrostatic stresses. To minimize the computational effort, the 3-D analysis is conducted only for the extreme values of the two parameters (CTE and stiffness) and the results are interpolated for intermediate values. The results show that the stiffness of the underfill material as well as the CTE play important role in influencing the fatigue life of FCOB assemblies. The fatigue durability increases as underfill stiffness and CTE increase. In the case of compliant interposers, the reverse is true and durability increases as interposer stiffness decreases. Furthermore, the interposer CTE affects the fatigue durability more significantly than underfill CTE, with durability increasing as CTE decreases. The eventual goal is to define the optimum design parameters of the FCOB underfill and CSP interposer, in order to maximize the fatigue endurance of the solder joints under cyclic thermal loading environments.  相似文献   

9.
A flip chip package was assembled by using 6-layer laminated polyimide coreless substrate, eutectic Sn37Pb solder bump, two kinds of underfill materials and Sn3.0Ag0.5Cu solder balls. Regarding to the yield, the peripheral solder joints were often found not to connect with the substrate due to the warpage at high temperature, modification of reflow profile was benefit to improve this issue. All the samples passed the moisture sensitive level test with a peak temperature of 260 °C and no delamination at the interface of underfill and substrate was found. In order to know the reliability of coreless flip chip package, five test items including temperature cycle test (TCT), thermal shock test (TST), highly accelerated stress test (HAST), high temperature storage test (HTST) and thermal humidity storage test (THST) were done. Both of the two underfill materials could make the samples pass the HTST and THST, however, in the case of TCT, TST and HAST, the reliability of coreless flip chip package was dominated by underfill material. A higher Young’s modules of underfill, the more die crack failures were found. Choosing a correct underfill material was the key factor for volume production of coreless flip chip package.  相似文献   

10.
A new flux-free reflow process using Ar+10%H/sub 2/ plasma was investigated for application to solder bump flip chip packaging. The 100-/spl mu/m diameter Sn-3.5wt%Ag solder balls were bonded to 250-/spl mu/m pitch Cu/Ni under bump metallurgy (UBM) pattern by laser solder ball bonding method. Then, the Sn-Ag solder balls were reflowed in Ar+H/sub 2/ plasma. Without flux, the wetting between solder and UBM occurred in Ar+H/sub 2/ plasma. During plasma reflow, the solder bump reshaped and the crater on the top of bump disappeared. The bump shear strength increased as the Ni/sub 3/Sn/sub 4/ intermetallic compounds formed in the initial reflow stage but began to decrease as coarse (Cu,Ni)/sub 6/Sn/sub 5/ grew at the solder/UBM interface. As the plasma reflow time increased, the fracture mode changed from ductile fracture within the solder to brittle fracture at the solder/UBM interface. The off-centered bumps self-aligned to patterned UBM pad during plasma reflow. The micro-solder ball defects occurred at high power prolonged plasma reflow.  相似文献   

11.
Flip chip bump cracking was observed after Si die attach reflow on the organic substrate of a module package. High-lead bump and eutectic SnPb cladding were used on Si die and the substrate sides, respectively. The reflow peak temperature was 260 °C for compatibility with passive components attach using lead-free solder. Flip chip bump cracking occurred at high-lead solder close to the die side. The cracking was eliminated by lowering the reflow peak temperature down to 225 °C. Main cause of the cracking at 260 °C reflow was attributed to the extensive Sn diffusion into high lead bump. This decreased the melting point of the high-lead solder around the die side, which in turn worsened the adhesion between solder and die due to the coexistence of solid and liquid. Diffusion length estimation showed both of the liquid- and solid-state diffusions of Sn. Crack gap in the solder bump was consistent with thermal expansion mismatch between Si die and organic substrate. The bump cracking was mitigated by use of 225 °C reflow, limiting Sn diffusion and providing a good integrity of high lead bumps on die side.  相似文献   

12.
In this paper, the effects of underfill on thermomechanical behavior of two types of flip chip packages with different bumping size and stand-off height were investigated under thermal cycling both experimentally and two-dimensional (2-D) finite element simulation. The materials inelasticity, i.e., viscoelasticity of underfill U8437-3 and viscoplasticity of 60 Sn40 Pb solder, were considered in the simulations. The results show that the use of underfill encapsulant increases tremendously (~20 times) the thermal fatigue lifetime of SnPb solder joint, weakens the effects of stand-off height on the reliability, and changes the deformation mode of the package. It was found that the thermal fatigue crack occurs in the region with maximum plastic strain range, and the Coffin-Manson type equation could then be used for both packages with and without underfill. Solder joint crack initiation occurred before delamination when using underfill with good adhesion (75 MPa) and the underfill delamination may not be a dominant failure mode in the present study. The interfacial stresses at the underfill/chip interface were calculated to analyze delamination sites, which agree with the results from acoustic image. Moreover, the effects of material models of underfill, i.e., constant elasticity (EC) and temperature dependent elasticity (ET) as well as the viscoelasticity (VE), on the thermomechanical behaviors of flip chip package were also studied in the simulation. The VE model gives comparatively large plastic strain range and large displacements in the shear direction, as well as decreased solders joint lifetime. The ET model gives similar results as the VE model and could be used instead of VE in simulations for the purpose of simplicity  相似文献   

13.
The geometry of solder joints in the flip chip technologies is primarily determined by the associated solder volume and die/substrate-side pad size. In this study, the effect of these parameters on the solder joint reliability of a fine-pitched flip chip ball grid array (FCBGA) package is extensively investigated through finite element (FE) modeling and experimental testing. To facilitate thermal cycling (TC) testing, a simplified FCBGA test vehicle with a very high pin counts (i.e., 2499 FC solder joints) is designed and fabricated. By the vehicle, three different structural designs of flip chip solder joints, each of which consists of a different combination of these design parameters, are involved in the investigation. Furthermore, the associated FE models are constructed based on the predicted geometry of solder joints using a force-balanced analytical approach. By way of the predicted solder joint geometry, a simple design rule is created for readily and qualitatively assessing the reliability performance of solder joints during the initial design stage. The validity of the FE modeling is extensively demonstrated through typical accelerated thermal cycling (ATC) testing. To facilitate the testing, a daisy chain circuit is designed, and fabricated in the package for electrical resistance measurement. Finally, based on the validated FE modeling, parametric design of solder joint reliability is performed associated with a variety of die-side pad sizes. The results show that both the die/substrate-side pad size and underfill do play a significant role in solder joint reliability. The derived results demonstrate the applicability and validity of the proposed simple design rule. It is more surprising to find that the effect of the contact angle in flip chip solder joint reliability is less significant as compared to that of the standoff height when the underfill is included in the package.  相似文献   

14.
倒装芯片凸焊点的UBM   总被引:6,自引:1,他引:5  
介绍了倒装芯片凸焊点的焊点下金属(UBM)系统,讨论了电镀Au凸焊点用UBM的溅射工艺和相应靶材、溅射气氛的选择,给出了凸焊点UBM质量的考核试验方法和相关指标。  相似文献   

15.
Processes of bump deposition based on mechanical procedures together with their reliability data are summarized in this paper. The stud bumping of gold, palladium, and solder is described and also a novel bumping approach for fine pitch solder deposition down to 100 μm pitches using thermosonic bonding on a modified wedge–wedge bonding machine. This wedge bumping doesn’t require a wire flame-off process step. Because of this, no active atmosphere is necessary. The minimum pad diameter which can be bumped using the solder wedge bumping is 50 μm, up to now. This bumping process is highly reproducible and therefore well-suited for different flip chip soldering applications. Palladium stud bumps provide a solderable under bump metallization. Results from aging of lead/tin solder bumps on palladium are shown. The growth of intermetallics and its impact on the mechanical reliability are investigated.  相似文献   

16.
A novel laser-assisted chip bumping technique is presented in which bumps are fabricated on a carrier and subsequently transferred onto silicon chips by a laser-driven release process. Copper bumps with gold bonding layers and intermediate nickel barriers are fabricated on quartz wafers with pre-deposited polyimide layers, using UV lithography and electroplating. The bumps are thermosonically bonded to their respective chips and then released from the carrier by laser machining of the polyimide layer, using light incident through the carrier. Bumps of 60 to 85 μm diameter and 50 μm height at a pitch of 127 μm have been fabricated in peripheral arrays. Parallel bonding and subsequent transfer of arrays of 28 bumps onto test chips have been successfully demonstrated. Individual bump shear tests have been performed on a sample of 13 test chips, showing an average bond strength of 26 gf per bump  相似文献   

17.
A modular test chip comprising an array of 2 mm square modules has been designed and fabricated. The maximum chip size can be up to 10 mm square, i.e. a 5 × 5 array of modules. The motivation behind the test chip is primarily the need to address reliability concerns in the use of copper wire bonding. It is known that the move to replace gold wire bonding with copper, driven primarily by the escalating price of gold, leads to reliability challenges at the interfaces between the wire bonds, the bond pads and the mould compound. Its function is to address. The chip comprises daisy chain structures to monitor changes of wire bond resistance and leakage current, large and small area stress sensors to measure stress on the chip associated with die attach and moulding, and comb and triple track sensors to study corrosion and moisture penetration related to mould compound.  相似文献   

18.
19.
A novel coaxial transition for CPW-to-CPW flip chip interconnect is presented and experimentally demonstrated. To realise the coaxial transition on the CPW circuit, benzocyclobutene was used as the interlayer dielectric between the vertical coaxial transition and the CPW circuit. The coaxial interconnect structure was successfully fabricated and RF characterised to 67 GHz. The structure showed excellent interconnect performance from DC up to 55 GHz with low return loss below 20 dB and low insertion loss less than 0.5 dB even when the underfill was applied to the structure.  相似文献   

20.
A parametric thermal compact modeling study of flip chip assemblies is presented. First, a star network of four thermal resistors was found to be optimal for a flip chip with arbitrary geometry and material properties. In a second step several parameters such as thermal underfill conductivity and die size were varied. The effect of these variations on the values of the four thermal resistors of the compact model is investigated. In a third step, a response surface model is derived from these compact models, which gives end-users the possibility of choosing a flip chip with arbitrary geometry and deduce automatically the corresponding thermal compact model. Having the compact model, it is now possible to apply customer specific boundary conditions to this compact model and compute the maximal temperature reached at the junction of the flip chip assembly in the specified environment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号