首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
由环氧化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)与NaHSO3开环反应合成了磺酸钠基SBS离聚体。研究了离聚体力学性能的影响因素、离聚体对SBS/氯醇橡胶(CHR)的增容作用、质量比对离聚体/聚丙烯(PP)共混物性能的影响。结果表明:硬脂酸锌能提高离聚体的力学性能;随着离聚体离子含量的增加,拉伸强度及扯断伸长率增加。加入少量离聚体,使离聚体/CHR共混物的力学性能提高,扫描电镜显示两者的相容性增加;离聚体与PP共混,在拉伸强度方面呈现协同效应。质量比各为1/1的离聚体增容SBS/CHR和离聚体/PP共混物的耐油性均较SBS大为改善。  相似文献   

2.
用环氧化(苯乙烯-丁二烯-苯乙烯)嵌段共聚物(SBS)开环反应合成了含顺丁烯二酸钾基的SBS离聚体,考察了离子基团不同含量对含顺丁烯二酸钾基的SBS离聚体力学性能的影响,研究了离聚体/聚丙烯(PP)共混物的力学性能和耐溶剂性能,以及离聚体对氯醇橡胶(CHR)/SBS共混物的增容效果。结果表明,该离聚体呈现热塑性弹性体行为;随着离子基团含量的增加,离聚体的拉伸强度及扯断伸长率增大,但当离子基团含量超过1.69mmol/g时,离聚体的力学性能又有所下降,离子基团最佳含量为1.23~1.69mmol/g;该离聚体与PP共混,在拉伸强度方面呈现协同效应;离聚体作为增容剂提高了SBS与CHR的相容性,当离聚体质量分数为3%时,力学性能达到最佳,共混物的耐溶剂性能也得到了改善。  相似文献   

3.
由环氧化的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)与磷酸氢二钠通过开环反应制备了含磷酸二钠基的SBS离聚体(PSBS),研究了PSBS的形态结构、混炼胶力学性能的影响因素、PSBS/聚丙烯(PP)共混物的力学性能以及PSBS对SBS/氯醚橡胶(CHR)共混物的增容作用.结果表明,磷酸盐基SBS离聚体呈大小不一、形状不规则的离子微区;当硬脂酸锌用量为PSBS质量分数的10%、离子基团含量为0.95 mmol/g时,PSBS混炼胶的力学性能最佳,且呈现热塑性弹性体行为;PSBS与PP共混,其拉伸强度与组成呈现协同效应,且耐甲苯性提高;PSBS可作为SBS/CHR共混物的增容刺,其最佳质量分数为3%,离聚体的加入有助于改善共混物的耐油性和相客性.  相似文献   

4.
研究了不同辐照剂量下苯乙烯-丁二烯-苯乙烯嵌段聚合物(SBS)/氯化聚乙烯(CPE)共混物的动态流变性能及力学性能。结果表明:随着辐照剂量的增大,共混物的粘流活化能降低,温度敏感性减弱;共混物拉伸强度和断裂伸长率下降,凝胶含量增加。  相似文献   

5.
磺化丁基橡胶离聚体与其他聚合物的共混   总被引:2,自引:0,他引:2  
研究了磺化丁基橡胶(IIR)离聚体与苯乙烯-丁二烯嵌段共聚物、聚丙烯、高密度聚乙烯、氯醚橡胶及顺丁橡胶的共混。结果表明,磺化IIR离聚体与苯乙烯-丁二烯嵌段共聚物或聚丙烯的共混物在拉伸强度方面呈现协同效应,随着磺化IIR离聚体质量分数的增加,聚丙烯的熔点下降。磺化IIR离聚体与高密度聚乙烯的共混物在拉伸强度方面呈现加和效应,而其与氯醚橡胶或顺丁橡胶的共混物在拉伸强度方面则呈现抵销效应。  相似文献   

6.
通过环氧化顺式1,4-聚丁二烯与硫酸氢钠开环反应制备了新型顺丁橡胶硫酸盐离聚体,该离聚体呈现较高的吸水性及突出的乳化性,并能作为氯醚橡胶(CHR)/苯乙烯-丁二烯一苯乙烯嵌段共聚物(SBS)共混物的增容剂.用透射电子显微镜研究了新型顺丁橡胶硫酸盐离聚体的形态,并用扫描电子显微镜分析了离聚体在共混中的增容原因.结果表明,离聚体中存在着黑色纳米级离子微区;离聚体明显改善了CHR与SBS两相界面作用.  相似文献   

7.
膨胀型阻燃剂阻燃PP/SBS/POE共混物的性能研究   总被引:4,自引:0,他引:4  
研究了聚磷酸胺类膨胀型阻燃剂(AP)和磷酸酯膨胀型阻燃剂(NP)的用量对聚丙烯(PP)/苯乙烯-丁二烯-苯乙烯共聚物(SBS)/乙烯-辛烯共聚物(POE)共混体系的力学性能、燃烧性能和遇水抗析出性能的影响。探讨了阻燃剂的析出机理,并从耐电压方面分析其在电线电缆领域应用的可行性。结果表明,NP具有更高的分解温度和残炭率。将AP与NP分别加入到PP/SBS/POE共混体系中,共混物的拉伸强度和断裂伸长率都降低,但阻燃性能提高。在相同添加量下,NP阻燃的共混物的拉伸强度和氧指数更高,而AP更能促进共混物成炭。AP和NP在热水浸泡过程中都会析出,析出过程是由表层向内部逐步析出的过程,析出量随着浸泡时间延长而增加。在相同的浸泡时间下,NP体系的析出量更小。浸泡后的共混物的力学性能和阻燃性能下降。  相似文献   

8.
通过添加聚苯乙烯(PS)、热塑性弹性体苯乙烯-丁二烯-苯乙烯共聚物(SBS),以改善聚丙烯(PP)的性能。先采用熔融法制备PP/PS共混物,在确定PP,PS最佳配比的基础上,再添加SBS制备PP/PS/SBS共混物,确定了PP,PS及SBS的最佳配比。研究了PP/PS,PP/PS/SBS共混物的力学性能、热性能及熔体流动行为。结果表明,当PP与PS的质量比为70∶30时,PP/PS共混物的性能最好,其拉伸强度为28.5 MPa,拉伸弹性模量为1 214 MPa,弯曲弹性模量为1 752 MPa,冲击强度为14.0 kJ/m2,断裂应变为130%,维卡软化温度为143.9℃。当PP,PS及SBS的质量比为70∶30∶10时,PP/PS/SBS共混物的性能最好,其拉伸强度为23.2 MPa,拉伸弹性模量1 040 MPa,断裂应变为260%,冲击强度为18.0 kJ/m2,弯曲强度为36.5 MPa,弯曲弹性模量为1 297 MPa,定挠度弯曲应力为36.1 MPa,弯曲破坏应力为36.5 MPa,熔体流动速率为8.94 g/(10 min),维卡软化温度为139.0℃。  相似文献   

9.
研究了磺化SBS离聚体与聚丙烯或高密度聚乙烯在质量分数为10%的硬脂酸锌存在下熔融共混得到的共混物的力学性能。结果表明,共混物的拉伸强度均呈协同效应,这是因为生成了热塑性互穿网络结构。随着聚烯烃含量的增加,共混物由热塑性橡胶变成增韧树脂。  相似文献   

10.
通过熔融共混法制备苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)/聚苯乙烯(PS)共混物,研究共混物的力学性能、熔体流动速率、耐热性能及耐老化性能。结果表明,随着PS质量分数由0增加到40%,SBS/PS共混物拉伸屈服强度由4.71 MPa增至12.11 MPa;SBS/PS的冲击强度呈现下降趋势;SBS/PS共混物的熔体流动速率由0.60g/10min下降至0.14g/10min,SBS/PS共混物的维卡软化点由53.8℃升到72.1℃。热氧、光氧、人工气候老化试验发现,随着PS用量的增加,SBS/PS共混物的耐热氧、耐光氧及耐老化能力增强。  相似文献   

11.
A method for the synthesis of novel sulfated ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed. SBS was first epoxidized by performic acid in the presence of a phase‐transfer catalyst; this was followed by a ring‐opening reaction with an aqueous solution of alkali salt of bisulfate. The optimum conditions for the ring‐opening reaction of the epoxidized SBS with an aqueous solution of KHSO4 were studied. During the ring‐opening reaction, both phase‐transfer catalyst and ring‐opening catalyst were necessary to enhance the conversion of epoxy groups to ionic groups. The products were characterized with Fourier transform infrared spectrophotometry and transmission electron microscopy (TEM). After the potassium ions of the ionomer were substituted with lead ions, the lead sulfated ionomer exhibited dark spots under TEM. Some properties of the sulfated ionomer were studied. With increasing ionic groups or ionic potential of the cations, the water absorbency and emulsifying volume of the ionomer and the intrinsic viscosity of the ionomer solution increased, whereas the oil absorbency decreased. The sulfated ionomer possessed excellent emulsifying properties compared with the sulfonated SBS ionomer. The sodium sulfated ionomers in the presence of 10% zinc stearate showed better mechanical properties than the original SBS. When the ionomer was blended with crystalline polypropylene, a synergistic effect occurred with respect to the tensile strength. The ionomer behaved as a compatibilizer for blending equal amounts of SBS and oil‐resistant chlorohydrin rubber. In the presence of 3% ionomer, the blend exhibited much better mechanical properties and solvent resistance than the blend without the ionomer. SEM photographs indicated improved compatibility between the two components of the blend in the presence of the ionomer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A novel method for the preparation of a quaternary ammonium ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed by a ring‐opening reaction of epoxidized SBS with triethylamine hydrochloride in the presence of a phase transfer catalyst. The optimum conditions were studied. The ionomer was characterized by quantitative analysis, IR spectroscopy, and 1H‐NMR spectroscopy. Its water absorbency, oil absorbency, dilute solution viscosity, and use as a compatibilizer for the blending of SBS and chlorosulfonated polyethylene (CSPE) were investigated. The results showed that, under optimum conditions, the epoxy groups can be completely converted to the quaternary ammonium groups. The IR spectrum did not exhibit the absorption peak for quaternary ammonium groups, whereas the 1H‐NMR spectrum and titration method demonstrated it. With increasing ionic group content, the water absorbency of the ionomer increased whereas its oil absorbency decreased. These indicated the amphiphilic character of the SBS ionomer. The dilute solution viscosity of the ionomer in toluene/methanol (9/1) solvent increased with increasing quaternary ammonium group content. The ionomer was used as a compatibilizer for the blends of SBS and CSPE. The addition of a small amount of the ionomer to the blend enhanced the mechanical properties of the blends: 2 wt % ionomer based on the blend increased the tensile strength and ultimate elongation of the blend nearly 2 times. The blends of equal parts SBS and CSPE behaved as oil‐resistant thermoplastic elastomers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1975–1980, 2006  相似文献   

13.
A novel method for synthesizing maleate ionomer of (styrene‐co‐butadiene) rubber (SBR) from epoxidized SBR was developed. The epoxidized SBR was prepared via epoxidation of SBR with performic acid formed in situ by H2O2 and formic acid in cyclohexane. The maleated ionomer was obtained by ring‐opening reaction of the epoxidized SBR solution with an aqueous solution of potassium hydrogen maleate. The optimum conditions were studied. It was found that it is necessary to use phase transfer catalyst and ring‐opening catalyst for enhancing the epoxy group conversion. To obtain 100% conversion addition of dipotassium maleate is important. The product was characterized by FTIR spectrophotometry and transmission electron microcroscopy (TEM). The results showed that the product was really an ionomer with domains of maleate ionic groups. Some properties of the ionomer, such as water absorbency, oil absorbency and dilute solution behavior were studied. With increasing ionic groups, the water absorbency of the ionomer increases, whereas the oil absorbency decreases. The dilute solution viscosity of the ionomer increases abruptly with increasing ionic group content. The ionomer can be used as a compatibilizer for the blends of SBS and chlorosulfonated polyethylene (CSPE). Addition of a small amount of the ionomer to the blend can enhance the mechanical properties of the blends. 3 wt % ionomer based on the blend can increase the tensile strength and ultimate elongation of the blend nearly twice. The compatibility of the blends enhanced by adding the ionomer was shown by scanning electron microscopy. The blend of equal parts of SBS and CSPE compatibilized by the ionomer behaves as an oil resistant thermoplastic elastomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 792–798, 2006  相似文献   

14.
The blends of ionomers of sulfonated (styrene–butadiene–styrene) triblock copolymer with two polyolefins as well as the blends of polystyrene (PSt) with two polar, oil‐resistant elastomers, i.e., chlorohydrin rubber (CHR) and chlorosulfonated polyethylene (CSPE), using the ionomer as compatibilizer were studied. The blends of the ionomer with polypropylene or high density polyethylene showed synergistic effects with respect to tensile strength. With increasing PSt content, the blends change their behavior from thermoplastic elastomer to toughened plastics. The synergism is probably because of the thermoplastic interpenetrating polymer networks formed in the blend. The blends exhibited high resistance against diesel oil or toluene. When PSt was blended with CHR or CSPE using the ionomer as compatibilizer, only 2 or 3% ionomer was needed to enhance the mechanical properties of the blends. The effect is due to the ion–polar interaction of the ionomer with the polar polymer. The enhanced compatibility of the blends by the ionomer was demonstrated by DSC and Scanning electron micrograph. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1887–1894, 2006  相似文献   

15.
磺化丁苯橡胶离聚体与一些聚合物的熔融共混及产物性能   总被引:2,自引:1,他引:2  
将磺化丁苯橡胶镁离子交联聚合体(简称离聚体)在增塑剂硬脂酸锌存在下分别与聚丙烯(PP)、高密度聚乙烯(HDPE)、丁苯嵌段共聚物(SBS)、聚苯乙烯(PS)、顺丁橡胶(BR)在Brabender塑性仪密炼机中熔融共混,考察了共混比对平衡扭矩及物理机械性能的影响。结果表明,磺化丁苯橡胶镁离聚体与SBS或PP共混,其拉伸强度呈协同效应,与HDPE共混呈加和效应,而与PS或BR共混则呈抵销效应。透射电镜  相似文献   

16.
The mechanical properties and morphological structures of blends based on Zn2+ neutralized low degree sulfated ethylene propylene diene monomer rubber (Zn–SEPDM) ionomer and polypropylene (PP) were studied. It was found that Zn2+ neutralized low degree sulfated EPDM ionomer and PP blends, which are new thermoplastic elastomeric materials, have better mechanical properties than those of PP/EPDM blend. Theoretical analysis of tensile data suggests that there is an increase of the extent of interaction between PP and EPDM in the presence of a low degree of Zn2+, which is also an indicator of better interfacial adhesion between PP and Zn–SEPDM than that between PP and EPDM. SEM results proved that the finer dispersed phase sizes and the shorter interparticle distances are the main reasons for the improved mechanical properties of the PP/EPDM blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1504–1510, 2004  相似文献   

17.
Graft copolymerization of SBS in the form of sodium ionomer with acrylamide in emulsion using benzoyl peroxide as initiator and sodium ionomer of maleated SBS as a self‐emulsifier, which can form a stable cyclohexane/water emulsion with AM without using any other emulsifier, was carried out. Factors affecting the graft copolymerization were studied. The grafting % can reach about 15%. Emulsifying properties of sodium ionomer of maleated SBS and the graft copolymer, as well as the compatibilizing effect of the graft copolymer in blending polyvinyl chloride (PVC) with SBS, were studied. The sodium ionomer of maleated SBS, the graft copolymers, and the blends were characterized with IR and DSC. The results showed that water absorbency and emulsifying volume increase obviously after graft copolymerization with AM. 0.2 g of the graft copolymer containing 14 wt % PAM grafts can emulsify a mixture of 30 mL toluene and 70 mL water completely. The graft copolymer can be used as an effective compatibilizer in the blending of PVC and SBS, more effective than the sodium ionomer of maleated SBS. Only 2 wt % of the copolymer based on the blend used in blending is enough to raise the tensile strength three times. The blends with weigh ratios of PVC/SBS at 3/7–4/6 in the presence of the graft copolymer behave as thermoplastic elastomers with a tensile strength of 14 MPa, an ultimate elongation of 750%, and a permanent set of 17%. Glass transition temperatures of the blend shifted inward in the presence of the graft copolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1248–1253, 2005  相似文献   

18.
The tensile properties of the blends containing neat acrylonitrile–butadiene–styrene (ABS), styrene–acrylonitrile (SAN) and the sodium sulphonated SAN ionomer have been investigated as a function of ion content of the ionomer in the blend. The tensile toughness and strength of the blends showed maximum values at a certain ion content of the ionomer in the blend. This is attributed to the enhanced tensile properties of the SAN ionomer by introduction of ionic groups into SAN and the interfacial adhesion between the rubber and matrix phase in the blend. The interfacial adhesion was quantified by NMR solid echo experiments. The amount of interphase for the blend containing the SAN ionomer with low ion content (3·1mol%) was nearly the same as that of ABS, but it decreased with the ion content of the ionomer for the blend with ion content greater than 3·1mol%. Changing the ionomer content in the blends showed a positive deviation from the rule of mixtures in tensile properties of the blends containing the SAN ionomer with low ion content. This seems to result from the enhanced tensile properties of the SAN ionomer, interfacial adhesion between the rubber and matrix, and the stress concentration effect of the secondary particles. © 1998 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号