首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 578 毫秒
1.
热处理温度对磁控溅射法制备YSZ电解质薄膜性能的影响   总被引:1,自引:0,他引:1  
采用射频磁控溅射方法在NiO-YSZ阳极基底上制备了致密的YSZ电解质薄膜,主要研究了热处理温度对电解质薄膜性能的影响.试验发现随着热处理温度的提高,所制备的YSZ薄膜中晶粒结合更加致密,气孔率显著降低,薄膜与基底间的结合更加紧密.通过组装单体电池实际考察了薄膜的性能,发现随着热处理温度的提高,电池的开路电压及放电性能均有大幅度的提高.在800℃下,开路电压由0.82V提高到1.023V,已接近SOFC的理论电压;最大功率密度由480mW/cm2提高到760 mW/cm2.  相似文献   

2.
采用相转化流延一步制备了NiO-Zr0.84Y0.16O2-δ (YSZ)阳极支撑层和功能层, 前者厚度为~700 μm, 含有沿厚度方向定向排列的开放直孔, 后者厚度为~60 μm。采用浆料涂膜法和高温共烧在阳极上制备厚度为15 μm的YSZ电解质薄膜, 丝网印刷制备YSZ-La0.84Sr0.16MnO3-δ (LSM)(质量比50:50)阴极。所制备的单电池显示出较高的电输出性能。以H2-3%H2O为燃料和环境空气为氧化剂, 800 ℃时电池的峰功率密度达到891 mW/cm2, 电池即使在高电流密度测试条件下也未出现明显的浓差极化, 这是由于其阳极具有开放直孔结构, 气相输运阻力小。  相似文献   

3.
采用固相混合法和浸渍法分别在阳极支撑的氧化钇稳定的氧化锆(YSZ)薄膜上制备了La0.7Sr0.3MnO3(LSM)-Sm0.2Ce0.8O1.9(SDC)复合阴极。结果表明,使用浸渍阴极的单电池获得更好的输出性能;但浸渍阴极的孔隙率较低,在高温区容易出现浓差极化现象。通过降低浸渍阴极的厚度,可以有效地提高电极的气体扩散速率,通过调整浸渍电极的厚度,可以在不同温度下获得理想的电池性能。采用4μm厚浸渍阴极的单电池,800℃的最高功率密度为1100mW/cm^2;采用28μm厚浸渍阴极的单电池,600℃的最高功率密度为295mW/cm^2。  相似文献   

4.
将多孔氧化镍阳极基体浸渍在具有不同锆铈比的硝酸锆和硝酸铈(锆铈比分别为:0.3∶0.7,0.35 ∶0.65,0.4∶0.6)混合溶液中,制备出三种含有ZDC晶相的Ni-ZDC/YSZ阳极,其中NiO颗粒与ZDC颗粒尺寸约为10μm,孔径大约为15~30μm,SEM扫描表明其整体骨架被锆铈氧化物薄层所均匀包裹.750℃时分别以湿H2和甲醇-水蒸气为燃料进行电池性能持久性测试,各单电池的开路电压(OCV)基本保持在1.05~1.1V,符合电解质在致密情况下能斯特方程计算出的OCV范围,其功率密度在8h内保持在0.4W/cm2左右,性能稳定.随着锆铈比值的增大,电池最大功率密度呈现出先升后降的趋势,表明合适的锆铈比才能起到较好的催化作用.  相似文献   

5.
在中温固体氧化物燃料电池(IT-SOFC)阳极的制备中,采用氨水、饱和硝酸镍溶液为原料,利用化学浸渍法引入催化剂NiO制备阳极;利用本实验室制备好的致密薄膜YSZ-多孔YSZ烧结复合体在氨水中浸渍,然后放入饱和硝酸镍中负压浸渍使得两种溶液在多孔YSZ的微孔中进行反应.计算结果表明:该法一次浸渍可增重NiO 17.2%(质量分数),是普通浸渍法(用致密薄膜YSZ-多孔YSZ烧结复合体在硝酸镍溶液中浸渍,包括常压浸渍与负压浸渍)一次浸渍增重量的3倍左右.采用场发射扫瞄电子显微镜观察多孔YSZ阳极的断面,比较了普通浸渍法和化学浸渍法催化剂NiO的一次浸渍量;对比了化学浸渍和(通常使用的)直接混合引进催化剂NiO所制备的阳极中NiO颗粒的形态.研究结果表明:采用化学浸渍法引入NiO制备阳极较普通浸渍法简化了工艺且大大缩短了制备周期.利用该法制备的单电池,其电性能明显高于利用直接混合引入催化剂NiO制备阳极的单电池.700℃,H2为燃料,空气为氧化剂,前者的最大输出功率密度达0.83W/cm2,后者的最大输出功率密度仅为0.43W/cm2.  相似文献   

6.
Ni-YSZ(钇稳定氧化锆)金属陶瓷普遍被用作固体氧化物燃料电池(SOFC)的阳极材料,其氧化物浆料的性质对湿法制备的SOFC的性能具有重要影响。通过zeta电位分析,研究了NiO-YSZ双分散相水系浆料的稳定性。对六种分散剂作用于NiO、YSZ表面的zeta电位进行研究,发现采用的阴离子分散剂和两性分散剂使NiO和YSZ在水中带有相反电荷而引起迅速絮凝;采用阳离子分散剂聚二烯二甲基氯化铵(PDAC)时,NiO和YSZ因带有正电荷相互排斥而稳定分散于水中,在此基础上,加入作为SOFC阳极造孔剂的石墨,采用聚乙烯吡咯烷酮(PVP)作为石墨的分散剂,制备出了NiO-YSZ-石墨的稳定水系浆料。采用此浆料通过注浆成型制得阳极支撑管,进而组装成SOFC单电池。该单电池在800℃时最大功率密度达到509 mW。cm~(-2);扫描电镜(SEM)分析表明电极与电解质间接触良好,阳极孔洞分布均匀。  相似文献   

7.
用流延法制备钇稳定氧化锆(YSZ)多孔体素坯,在流延素坯上丝网印刷沉积10Sc1CeSZ电解质,经共烧结得到多孔YSZ支撑致密10Sc1CeSZ薄膜电解质的约为5cm×5cm较大面积的双层膜。在电解质薄膜上依次印刷阻挡层Ce0.8Gd0.2O2(CGO)和阴极La0.6Sr0.4CoO3(LSC)。向多孔YSZ支撑体内浸渍偏钒酸铵、草酸的混合溶液和硝酸铜溶液多次后经低温煅烧后得到V2O5-CuO-YSZ复合阳极。用SEM对双层薄膜结构浸渍前后进行显微结构表征,结果表明流延法制备的多孔YSZ孔洞连通,丝网印刷制备的电解质层致密,电解质厚度约为7μm;浸渍后,催化剂均匀地分布在YSZ孔隙间。在800℃,分别以湿H2和含5.2×10-3体积分数的H2S湿合成气(40%H2,60%CO)为燃料进行电化学测试,开路电压分别为1.07和1.08V,最大功率密度均为37mW/cm2。电性能测试结果表明,该方法制备的固体氧化物燃料电池复合阳极具有抗硫化氢毒化和抗碳沉积的性能。  相似文献   

8.
以NiO和Ce0.8Gd0.2O1.9(CGO)为原料, 通过静压成型, 在1450℃高温焙烧, 并于700℃用80%He气稀释的H2还原后, 制成了Ni-CGO中温固体氧化物燃料电池(SOFC)阳极, 测定了阳极的孔特性, 用SEM观察了阳极的微观形貌, 通过XRD衍射图谱表征了阳极材料还原前后的晶相变化, 用EDS分析了阳极的元素组成与分布, 测试了阳极的电导率和燃料电池性能. 研究结果表明, 所制备的Ni-CGO阳极孔径主要在1~2μm, 孔隙率随NiO含量的增加而增大, 最大可达到30%. 通过SEM观察可知金属相与CGO陶瓷相融合良好, 阳极与电解质结合紧密, 用20%的H2气体700℃可将NiO彻底还原成金属Ni, 但是CGO晶相没有变化, 还原后的阳极电导率随NiO量减少而降低, NiO质量比为40%时是电导率的阈值; 用Ni-CGO为阳极, CGO为电解质, LSCF为阴极制备的中温SOFC功率密度650℃可达0.14W/cm2.  相似文献   

9.
以水系流延法制备阳极支撑型平板式IT-SOFC的阳极/电解质(Ni-YSZ/YSZ)半电池, 通过浸渍La2O3颗粒对半电池阳极进行改性, LSM+8YSZ为阴极制备单电池。采用扫描电子显微镜(SEM)观察单电池显微结构; 利用能谱(EDS)测试阳极成分; 单电池以乙醇水蒸气为燃料, 在750℃下利用循环伏安法测试单电池的功率密度, 交流阻抗法测试单电池的阻抗。结果表明: 单电池Ni/YSZ阳极孔洞中浸渍的La2O3颗粒约90 nm; 浸渍改性的电池比未浸渍的电池具有更稳定的电性能, 随着La2O3浸渍量越来越多, 电池的电性能和稳定性越来越好, 抗积碳能力越来越强。当浸渍量为2.4wt%时, 以乙醇水蒸气为燃料在750℃下运行7 h后, 电池衰减率仅为0.09%/h。  相似文献   

10.
采用溶胶-凝胶法制备出匀质、比表面积高的La0.6Sr0.4CoO3-δ(LSC)阴极前驱体粉体以及其与Ce0.8Gd0.2O2-δ(CGO)的复合阴极粉体,并通过TGA、XRD和BET等手段对粉体进行表征;结果表明:LSC阴极前驱体经在高温氩气中煅烧和在空气中850℃退火2 h后能够完成成相,这相应于功能梯度阴极的制备和SOFC电池堆工作前的退火条件,LSC/CGO和LSC分别沉积在NiO/YSZ阳极支撑的SOFC半电池CGO阴极阻挡层上,功能梯度阴极在氩气中分别在900、950、1000℃温度下进行烧结,SEM和EDX分析发现功能梯度阴极与CGO阻挡层结合良好,但SrZrO2可在YSZ-CGO界面层中形成。LSC原位成相后的单电池性能测试表明,输出性能随着烧结温度的降低而提高,相比而言900℃为最佳烧结温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号