首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim was to prepare an optimized zolmitriptan (ZT)-loaded transfersome formulation using Box–Behnken design for improving the bioavailability by nasal route for quick relief of migraine and further to compare with a marketed nasal spray. Here, three factors were evaluated at three levels. Independent variables include: amount of soya lecithin (X1), amount of drug (X2) and amount of tween 80 (X3). The dependent responses were vesicle size (Y1), flexibility index (Y2) and regression coefficient of drug release kinetics (Y3). Prepared formulations were evaluated for physical characters and an optimal system was identified. Further, in vivo pharmacokinetic study was performed in male wistar rats to compare the amount of drug in systemic circulation after intranasal administration. Optimized ZT-transfersome formulation containing 82.74?mg of lecithin (X1), 98.37?mg of zolmitriptan (X2) and 32.2?mg of Tween 80 (X3) and had vesicle size of 93.3?nm, flexibility index of 20.25 and drug release regression coefficient of 0.992. SEM picture analysis revealed that the vesicles were spherical in morphology and had a size more than 1?µm. The formulations were found to be physically stable upon storage at room temperature up to 2?months period, as there were no significant changes noticed in size and ZP. The nasal bioavailability of optimized transfersome formulation was found to be increased by 1.72 times than that of marketed nasal spray (Zolmist®). The design and development of zolmitriptan as transfersome provided improved nasal delivery over a conventional nasal spray for a better therapeutic effect.  相似文献   

2.
Purpose: Zaleplon (ZL) is a hypnotic drug prescribed for the management of insomnia and convulsions. The oral bioavailability of ZL was low (~30%) owing to poor water solubility and hepatic first-pass metabolism. The cornerstone of this investigation is to develop and optimize solid lipid nanoparticles (SLNs) of ZL with the aid of Box–Behnken design (BBD) to improve the oral bioavailability.

Methods: A design space with three formulation variables at three levels were evaluated in BBD. Amount of lipid (A1), amount of surfactant (A2) and concentration of co-surfactant (%) (A3) were selected as independent variables, whereas, particle size (B1), entrapment efficiency (B2) and zeta potential (ZP, B3) as responses. ZL-SLNs were prepared by hot homogenization with ultrasonication method and evaluated for responses to obtain optimized formulation. Morphology of nanoparticles was observed under SEM. DSC and XRD studies were examined to understand the native crystalline behavior of drug in SLN formulations. Further, in vivo studies were performed in Wistar rats.

Results: The optimized formulation with 132.89?mg of lipid, 106.7?mg of surfactant and 0.2% w/v of co-surfactant ensued in the nanoparticles with 219.9?±?3.7?nm of size, ?25.66?±?2.83?mV surface charge and 86.83?±?2.65% of entrapment efficiency. SEM studies confirmed the spherical shape of SLN formulations. The DSC and XRD studies revealed the transformation of crystalline drug to amorphous form in SLN formulation. In conclusion, in vivo studies in male Wistar rats demonstrated an improvement in the oral bioavailability of ZL from SLN over control ZL suspension.

Conclusions: The enhancement in the oral bioavailability of ZL from SLNs, developed with the aid of BBD, explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery of this poorly soluble drug.  相似文献   

3.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

4.
Background: Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect.

Methods: Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG2 liver cancer cells. Free piperine or piperine-loaded Soluplus®/TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2?mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo.

Results: The diameter of piperine-loaded Soluplus®/TPGS (4:1) mixed micelles was about 61.9?nm and the zeta potential –1.16?±?1.06?mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus®/TPGS. The release results in vitro showed that the piperine-loaded Soluplus®/TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p?Conclusion: The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine-loaded Soluplus®/TPGS mixed micelles are an effective strategy to deliver piperine for cancer therapy.  相似文献   

5.
Puerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy. Pseudo-ternary phase diagrams were constructed to investigate the effects of different oil on the emulsifying performance of the blank ME. Intestinal mucosal injury test was conducted to evaluate safety of PPC-ME, and no sign of damage on duodenum, jejunum and ileum of rats was observed using hematoxylin-eosin staining. In pharmacokinetic study of PPC-ME, a significantly greater Cmax (1.33?µg/mL) was observed when compared to puerarin (Cmax 0.55?µg/mL) or PPC (Cmax 0.70?µg/mL); the relative oral bioavailability of PPC-ME was 3.16-fold higher than puerarin. In conclusion, the ME combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of puerarin.  相似文献   

6.
Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo.  相似文献   

7.
The aim of this study was to evaluate the in vitro and in vivo efficacy of paclitaxel–lapatinib-loaded Pluronic micelles. Lapatinib and pluronic sensitize the cancerous cells to paclitaxel via efflux pump inhibition. In addition, pluronic polymers can trigger intrinsic apoptosis pathways. Furthermore, micellar system can passively target the chemotherapeutic agents by enhanced permeability and retention effect. The paclitaxel–lapatinib-loaded micelles were characterized in means of encapsulation efficacy and size. The in vitro analyses were performed by MTT assay and uptake studies. Real-time imaging and in vivo anti-tumor efficacy studies were also performed. The prepared micelles have acceptable encapsulation ratio and size. Hemolysis assay confirmed that the micelles are hemo-compatible. MTT assay demonstrated that drug-loaded micelles have superior cytotoxicity compared with the naked drugs. The confocal microscopy and flowcytometry analyses showed that micelles are mainly internalized by endocytosis. According to the results of the in vivo imaging, the micelles are accumulated within liver. In vivo anti-tumor efficacy studies confirmed that tumor inhibition of drug-loaded micelles was significant compared to Intaxel®.  相似文献   

8.
9.
This study investigates potentials of solid lipid nanoparticles (SLN)-based gel for transdermal delivery of tenoxicam (TNX) and describes a pharmacokinetic–pharmacodynamic (PK–PD) modeling approach for predicting concentration–time profile in skin. A 23 factorial design was adopted to study the effect of formulation factors on SLN properties and determine the optimal formulation. SLN-gel tolerability was investigated using rabbit skin irritation test. Its anti-inflammatory activity was assessed by carrageenan-induced rat paw edema test. A published Hill model for in vitro inhibition of COX-2 enzyme was fitted to edema inhibition data. Concentration in skin was represented as a linear spline function and coefficients were estimated using non-linear regression. Uncertainty in predicted concentrations was assessed using Monte Carlo simulations. The optimized SLN was spherical vesicles (58.1?±?3.1?nm) with adequate entrapment efficiency (69.6?±?2.6%). The SLN-gel formulation was well-tolerated. It increased TNX activity and skin level by 40?±?13.5, and 227?±?116%, respectively. Average Cmax and AUC0–24 predicted by the model were 2- and 3.6-folds higher than the corresponding values computed using in vitro permeability data. SLN-gel is a safe and efficient carrier for TNX across skin in the treatment of inflammatory disorders. PK–PD modeling is a promising approach for indirect quantitation of skin deposition from PD activity data.  相似文献   

10.
Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3T3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist in a mild inflammatory reaction, pronounced macrophage infiltration that increases over time, involving mono- and poly-nuclear foreign body giant cells that resorb the polymeric matrix. No fibrous capsules were formed around polymeric microparticles; neither necrosis nor any other adverse morphological changes and tissue transformation in response to the implantation of the PHB microparticles were recorded. The results of the study suggest that polyhydroxybutyrate is a good candidate for fabricating prolonged-action drugs in the form of microparticles intended for intramuscular injection.  相似文献   

11.
Smart matrices are required in bone tissue-engineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bio-artificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.  相似文献   

12.
Polymeric microparticles have been previously demonstrated to deliver various therapeutic agents efficiently to targeted regions by protecting the drug from harsh gastric milieu of the gastrointestinal tract. In this study, we investigated the hypoglycemic effect of β-cyclodextrin polymeric insulin microparticles in diabetic rats via the oral route of administration. β-cyclodextrin microparticles were prepared by a unique one-step spray-drying technique and stabilized by incorporating enteric retardant polymers in the formulation. The insulin-loaded microparticles had a mean size of 0.8?±?0.25?μm with a zeta potential of 3.57?+?0.62?mV. As seen with the chromatographic analysis, the drug content in the microparticles was determined to be 94.9?±?2.77%. RAW macrophage cells showed greater than 80% viability after 24?h of incubation with the insulin and blank microparticles. For the in vitro release study, the microparticles were able to protect the insulin in gastric fluid where no significant release was detected, followed by only 50% release in intestinal fluid for the first 8?h of the study. This was seen to correlate with the in vivo data where 50% glucose inhibition was seen after 8?h of oral administration in diabetic rats. This data suggest that the oral insulin microparticles were able to reduce glucose levels in disease conditions and would be a favorable route of administration to patients as an alternative to daily subcutaneous injections.  相似文献   

13.
Solid dispersion (SD) technique is a promising strategy to improve the solubility and dissolution of BCS class II drugs. However, only few products are marketed till today based on SD technology due to poor flow properties and stability. The present work was intended to solve these problems by using combination approach, melt dispersion and surface adsorption technologies. The main aim of the present work is to improve the absorption in the stomach (at lower pH) where the absorption window exists for the drug by improving the dissolution, resulting in the enhancement of oral bioavailability of poorly soluble, weakly acidic drug with pH dependant solubility, i.e. valsartan. Melt dispersion granules were prepared in different ratios using different carriers (Gelucire 50/13, PEG 8000 and Pluronic F-68) and lactose as an adsorbent. Similarly, physical mixtures were also prepared at corresponding ratios. The prepared dispersion granules and physical mixtures were characterized by FTIR, DSC and in vitro dissolution studies. DSC studies revealed reduction in the crystallinity with a possibility of presence of amorphous character of drug in the dispersion granules. From dissolution studies, valsartan Gelucire dispersion (GSD4; 1:4 ratio) showed complete drug release in 30?min against the plain drug which showed only 11.31% of drug release in 30?min. Pharmacokinetic studies of optimized formulation in male Wistar rats showed 2.65-fold higher bioavailability and 1.47-fold higher Cmax compared to pure drug. The melt dispersion technology has the potential to improve dissolution and the bioavailability of BCS class II drugs.  相似文献   

14.
Context: Short residence time, poor bioavailability and poor permeability are the major problems for conventional eye drops treatment.

Objective: The aim of this article is to develop, optimize and ex vivo–in vivo investigation of brimonidine tartrate in situ gel as compared to marketed eye drops for the treatment of glaucoma.

Materials and methods: The effect of independent variables, namely concentrations of polymers, on various dependent variables like viscosity at physiological pH and in vitro drug release were studied by using 32 factorial design. Further the optimized formulation was characterized for ex vivo and in vivo study.

Results and discussion: Experimental data demonstrated that optimized in situ gel formulation (F8) showed in vitroex vivo sustained release profile with polymer composites carbopol 974P and HPMC K4M. After 5?h of ex vivo transcorneal permeation study, the amount recovered from the corneal surface on the donor chamber 12.40% (124 ug) and the amount collected from the receptor chamber 76.8% (760 ug) of the initial dose 1?mg. The total amount recovered from the permeation experiment was 89.2%. Bioadhesive carbopol 974P and viscosity HPMC K4M composites optimized formulation (F 8) produce greater influence on the duration of drug action and improved intraocular pressure reduction activity as compared to marketed eye drop solution in in vivo study.

Conclusion: The developed in situ gelling system as a promising ophthalmic formulation to prolong the drug lowering effect on the intraocular pressure.  相似文献   

15.
Both an experimental design and optimization techniques were carried out for the development of chitosan–pectin–carboxymethylcellulose microspheres to improve the oral absorption of albendazole as a model drug. The effect of three different factors (chitosan, pectin and carboxy methyl cellulose concentrations) was studied on five responses: yield, morphology, dissolution rate at 30 and 60?min, and encapsulation efficiency of the microspheres. During the screening phase, the factors were evaluated in order to identify those which exert a significant effect. Simultaneous multiple response optimizations were then used to find out experimental conditions where the system shows the most adequate results. The optimal conditions were found to be: chitosan concentration, 1.00% w/v, pectin concentration 0.10% w/v and carboxymethylcellulose concentration 0.20% w/v. The bioavailability of the loaded drug in the optimized microspheres was evaluated in Wistar rats which showed an area under curve (AUC) almost 10 times higher than the pure drug.  相似文献   

16.
The purpose of the present study was to optimize the formulations of the thermoresponsive ophthalmic in situ gels of a poorly water-soluble drug fluconazole (FLU) and evaluate the in vitro and in vivo properties of the formulations. The thermoresponsive ophthalmic FLU in situ gels were prepared by mixing FLU, Poloxamer407, Tween80, benzalkonium chloride and carbopol934 in borate buffer solution. The in vivo eye irritation tests and ophthalmic absorption were carried out in rabbits. The formulation compositions influenced the physicochemical properties of FLU in situ gels. The amount of poloxamer407 in the formulation was the main factor that affected the sol–gel transition temperature of the products. Tween80 not only improved the solubility of the FLU but also affected the products’ sol–gel transition temperature. In this study, sol–gel transition temperature was not affected by carbopol934. However, carbopol934 affected pH value, transparency and gelling capacity of the products. The product of the optimized formulation was a pseudoplastic fluid and its sol–gel transition temperature was 30.6?±?1.2?°C. The autoclaving test showed that the sol–gel transition temperature, the flow ability and the flow behavior of the test samples did not change obviously after autoclaving sterilization at 121?°C and 15?psi for 20?min, thus the autoclaving was an acceptable sterilization method for this preparation. The thermoresponsive ophthalmic FLU in situ gels’ in vivo ophthalmic absorption was superior to the conventional FLU eye drop. In conclusion, the thermoresponsive ophthalmic FLU in situ gel is a better alternative than the FLU eye drop.  相似文献   

17.
The objective of this study is to develop, in vitro and in vivo evaluation of novel approaches for controlled release of paroxetine hydrochloride hemihydrate (PHH) in comparison to patented formulation PAXIL CR® tablets of GlaxoSmithKline (Geomatrix? technology). In one of the approaches, hydrophilic core matrix tablets containing 85% of the dose were prepared and further coated with methacrylic acid copolymer to delay the release. An immediate release coating of 15% was given as top coat. The tablets were further optionally coated using ethyl cellulose. In the second approach, hydrophobic matrix core tablets containing metharylic acid copolymer were prepared. In the third approach, PHH was granulated with enteric polymer and further hydrophobic matrix core tablets were prepared. The effect of polymer concentration, level of enteric coating on drug release was evaluated by in vitro dissolution study by varying dissolution apparatus and the rotation speeds. It was found that increase in concentration of high viscosity hydroxypropylmethylcellulose (HPMC) resulted in reduction of the release rate. The drug release was observed to be dependent on the level of enteric coating and ethyl cellulose coating, being slower at increased coating. The release mechanism of PHH followed zero-order shifting to dissolution dependent by the increase of HPMC content. The formulation was stable without change in drug release rate. In vivo study in human volunteers confirmed the similarity between test and innovator formulations. In conclusion, HPMC-based matrix tablets, which were further coated using methacrylic acid copolymer, were found to be suitable for the formulation of single layer-controlled release PHH.  相似文献   

18.
To obtain bioceramics with good osteoinductive ability and mechanical strength, graded hydroxyapatite–zirconia (HA–ZrO2) composite bioceramics were prepared in this work. The biocompatibility of the bioceramics was investigated in vitro based on acute toxicity and cytotoxicity tests and hemolysis assay. Results showed the studied graded HA–ZrO2 had little toxicity to mouse and L929 mouse fibroblasts. Also, hemolysis assay indicated a good blood compatibility of the bioceramics. Based on the results of in vitro tests, animal experiments were performed on white New Zealand rabbits by implantation into hip muscles and femur. It was found that the graded HA–ZrO2 composite bioceramics exhibited superior osteoinductive ability, which may be a promising bioceramics implant.  相似文献   

19.
The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin–epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type AL, which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.  相似文献   

20.
Lopinavir (LPV)-loaded poly-ε-caprolactone (PCL) nanoparticles (NPs) were prepared by emulsion solvent evaporation technique. Effects of various critical factors in preparation of loaded NPs were investigated. Box–Behnken design (BBD) was employed to optimize particle size and entrapment efficiency (EE) of loaded NPs. Optimized LPV NPs exhibited nanometeric size (195.3?nm) with high EE (93.9%). In vitro drug release study showed bi-phasic sustained release behavior of LPV from NPs. Pharmacokinetic study results in male Wistar rats indicated an increase in oral bioavailability of LPV by 4-folds after incorporation into PCL NPs. From tissue distribution studies, significant accumulation of loaded NPs in tissues like liver and spleen indicated possible involvement of lymphatic route in absorption of NPs. Mechanistic studies using rat everted gut sac model revealed endocytosis as a principal mechanism of NPs uptake. In vitro rat microsomal metabolism studies demonstrated noticeable advantage of LPV NPs by affording metabolic protection to LPV. These studies indicate usefulness of PCL NPs in enhancing oral bioavailability and improving pharmacokinetic profile of LPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号