首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Vacuolar H+‐ATPase (V‐ATPase) is thought to play a role in stress tolerance. In this study it was found that bottom‐fermenting yeast strains, in which the V‐ATPase‐related genes DBF2, VMA41/CYS4/NHS5 and RAV2 were overexpressed, exhibited stronger ethanol tolerance than the parent strain and showed increased fermentation rates in a high‐sugar medium simulating high‐gravity fermentation. Among the strains examined, the DBF2‐overexpressing bottom‐fermenting yeast strain exhibited the highest ethanol tolerance and fermentation rate in YPM20 medium. Using this strain, high‐gravity fermentation was performed by adding sugar to the wort, which led to increased fermentation rates and yeast viability compared with the parent strain. These findings indicate that V‐ATPase is a stress target in high‐gravity fermentation and suggests that enhancing the V‐ATPase activity increases the ethanol tolerance of bottom‐fermenting yeast, thereby improving the fermentation rate and cell viability under high‐gravity conditions. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

2.
Ubiquitin conjugating enzyme 1 (Ubc1) is a member of the E2 family of enzymes that conjugates ubiquitin to damaged proteins destined for degradation by the ubiquitin proteasomal system. It is necessary for stress tolerance and is essential for cell survival in Saccharomyces cerevisiae. Ubc1 has five serine residues that are potential substrates for phosphorylation by kinases. However, no data are available to indicate that Ubc1 function or stress tolerance in S. cerevisiae is regulated by serine phosphorylation of Ubc1. We demonstrate that Ubc1 is phosphorylated in serine residue(s). Furthermore, expression of Ubc1 mutants that are ‘constitutively phosphorylated’ or ‘dephosphorylated’ in mitogen‐activated protein (MAP) kinase serine residues (S97 and S115) affected tolerance to thermal and reductive stress in S. cerevisiae. Specifically, expression of Ubc1S97A and S115D increased thermo‐tolerance in both BY4741 and TetO7UBC1ura3Δ cells. Serine phosphorylation of Ubc1 was decreased in BY4741 cells following exposure at 40 °C. Tolerance to reductive stress in the same strains correlated with the expression of Ubc1S97A. Ubc1 phosphorylation did not show significant alteration under similar conditions. Both hog1Δ and slt2Δ cells expressing Ubc1S115D and Ubc1S115A were rendered tolerant to thermal and reductive stress respectively. Ubc1 phosphorylation was higher in BY4741 cells compared to hog1Δ cells at 30 °C and was significantly reduced in BY4741 cells upon exposure at 40 °C. Taken together, the cell survival assays and Ubc1 phosphorylation status in strains and under conditions as described above suggest that tolerance to thermal and reductive stress in S. cerevisiae may be regulated by MAP kinase‐mediated phosphorylation of Ubc1S97 and S115. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号