首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金,利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875℃-1100℃、应变速率0.001s-1-1s-1,变形量为70%时的热变形行为,建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。研究结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824KJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93KJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定两个失稳区,中等变形温度(950℃-1070℃)高应变速率(0.31-0.1s-1)易发生绝热剪切,结合热加工图确定适合的加工区间:应变速率为0.001-0.01s-1,变形温度为875℃-925℃。  相似文献   

2.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

3.
通过真空熔炼制备了Cu-1Ti-1Ni-0.1Mg合金,采用Gleeble-1500D数控动态-力学模拟试验机,在0.001~10 s-1应变速率和550~950℃变形温度下,对Cu-1Ti-1Ni-0.1Mg合金进行了热变形试验。在流变应力的基础上得到了合金的本构方程,绘制了其热加工图,分析了合金的微观组织演变和析出相类型。结果表明:Cu-1Ti-1Ni-0.1Mg合金的峰值应力随着变形温度的降低和应变速率的增加而增大。变形温度的升高对动态再结晶有促进作用,合金的主要析出相为CuNi2Ti。Cu-1Ti-1Ni-0.1Mg合金的最佳热加工区域为应变速率0.001~0.15 s-1,变形温度850~950℃。  相似文献   

4.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

5.
6.
7.
为获得组织细小均匀的资源节约型GH4169合金大型锻棒,采用Gleeble-3500型热模拟试验机研究了一种资源节约型GH4169合金的热变形行为,基于应力-应变曲线和峰值应力和应变,建立了该合金的热变形本构关系以及一种描述其流变应力行为的本构方程,并基于动态材料模型绘制了该合金的热加工图.结果 表明:该合金的再结晶激活能(Q)为467.91 kJ·mol",与高纯材料冶炼的合金相当,表明资源节约型高温合金具有与高纯材料冶炼合金相似的热加工性;该合金再结晶组织有较高热加工参数敏感性,随变形量的增加,热加工工艺参数窗口变窄.  相似文献   

8.
研究了Nb-Ti-Al高温合金在变形温度800~950℃,应变速率0.01~10 s~(-1)范围内的热变形行为。通过测试的真应力应变曲线计算了应力指数和变形激活能,并采用Zener-Hollomon参数法构建了合金高温塑性变形的本构关系,构建了功率耗散图和失稳图。结果表明,在实验条件下,Nb-Ti-Al合金理论上不会出现失稳区域。  相似文献   

9.
通过Gleeble-3500 热模拟实验机在950~1150℃,应变速率为0.01~3s-1 条件下的近等温热模拟压缩实验,建立了NiPt 15合金的流变应力-应变曲线及其热加工图。分析了NiPt15合金不同变形阶段的功率耗散情况;阐明了NiPt15合金的损伤失稳机制;基于Prasad 动态材料模型获得了不同应变速率、温度条件下的能量耗散率和失稳系数;研究了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:(1)变形温度是影响曲线变化趋势及动态再结晶的主要因素,且变形温度越高,应变速率越低,动态再结晶越充分;(2)加工失稳机制主要包括局部塑性变形、剪切变形带以及开裂,随真应变的增大先发生局部塑性变形,而后由剪切变形带取代,并最终向开裂演变;(3)NiPt15合金较为优异的加工实验条件主要集中在非失稳区,即变形参数1000~1100℃,0.03~0.1s-1以及1100~1130℃,0.01~0.03s-1范围内,并通过显微组织分析对热加工图进行了验证。  相似文献   

10.
对Monel K-500合金对试样进行了时效处理,让其析出大量碳化物。使用Gleeble-3800热模拟机对Monel K-500合金试样进行了高温压缩试验,研究了该合金在变形温度850~1150℃,应变速率0.01~10 s~(-1)时的流动应力行为。建立了该合金的热压缩本构方程。根据试验数据建立了真应变0.8的热加工图。使用光学显微镜进行了组织分析,确定了合金压缩变形的加工"安全区"和"失稳区"。结果表明:在变形温度850℃、应变速率0.1 s~(-1)时合金开始动态再结晶;合金的热变形激活能为375.32611 k J/mol。合理的热加工参数是:应变速率0.1~0.5 s~(-1)、变形温度1000~1150℃。此时耗散功率在40%左右,再结晶充分,组织细小、均匀。  相似文献   

11.
利用Gleeble-3800热模拟试验机对新型高密度DT740合金进行轴向热压缩试验,研究该合金在变形温度950~1250℃、应变速率0. 01~1 s~(-1)条件下的热变形行为及组织演变规律,基于双曲正弦本构关系建立其本构方程并依据动态材料模型建立热加工图,分析讨论了不同区域内的高温变形特征,确定该合金最佳的热加工工艺参数。研究结果表明:DT740合金的流变曲线表现出典型的动态再结晶特征,其流变应力随变形温度的降低和应变速率的升高而增加;计算得到该合金的热变形激活能Q为546. 87 k J·mol~(-1);确定了DT740合金最佳的锻造热加工温度范围为1150~1250℃,在此温度范围内合金的热加工性能最佳,可获得均匀、细小的完全动态再结晶组织,能量耗散率η值约为44%。  相似文献   

12.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 k J/mol,最佳热加工工艺为:变形温度1050~1150℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

13.
在Gleeble~(-1)500D热模拟试验机上对O态6082铝合金进行了热压缩实验,研究了该合金在变形温度300~500℃,应变速率0.01~10 s~(-1)条件下的热变形行为和组织演化;基于Arrhenius双曲正弦本构关系建立了6082铝合金的本构方程;基于动态材料模型(DDM)和Murty法建立了热加工图,并结合微观组织进行验证。研究结果表明:6082铝合金为正应变速率敏感材料,峰值应力随温度的降低和应变速率的升高而升高,热变形过程中的主要软化机制为动态回复,在较高温较低应变速率(500℃,0.1 s~(-1))时,该合金发生动态再结晶。计算得到该合金的热激活能为171.1539 k J·mol~(-1),最佳热加工工艺参数区间为:450~500℃,0.2~0.5 s~(-1)。  相似文献   

14.
通过热模拟试验,系统研究热挤压-退火态FGH96合金在变形温度为1020~1110℃、应变速率为0.001~1 s-1条件下的热压缩变形行为,建立本构方程并构建热加工图;结合电子背散射衍射(EBSD)分析,优化合金的变形工艺参数。结果表明:合金在热变形过程中发生明显动态再结晶现象。利用摩擦修正后的峰值应力获得的该合金热压缩本构方程材料常数分别为:α=0.0071272、n=2.6417、A=6.6811×10~(15)、Q=448.05k J/mol,较低的变形激活能与热挤压后初始晶粒尺寸的减小以及二次γ′相的粗化有关。利用构建的不同应变量ε下热压缩本构方程材料常数的五次多项式组对合金的流变应力进行了预测,预测数据与实验摩擦修正数据吻合较好。根据热加工图能量耗散效率并结合微观组织分析,对热挤压-退火态FGH96合金提出了建议的热加工参数范围:变形温度约为1075~1080℃、应变速率约为1×10~(-3)~1×10~(-1.5)s~(-1)的区域。  相似文献   

15.
利用Gleeble-1500D数控动态-力学模拟试验机,在变形温度为500~850℃和应变速率为0.001~10 s~(-1)条件下对Cu-0.8%Mg-0.2%Fe合金进行等温压缩试验,测得了合金的真应力-真应变曲线。根据动态材料模型,建立了热加工图,结合合金高温变形前后的显微组织演变,对其热加工性能进行研究,并分析Fe的加入对Cu-0.8%Mg合金组织和性能的影响。结果表明:Fe可以细化晶粒,提高合金的硬度,使合金的导电率略有下降;合金的流变应力随温度的降低或应变速率的升高而增大;高温低应变速率有利于促进动态再结晶;该合金适宜的热加工参数范围为:变形温度650~825℃,应变速率0.001~0.05 s~(-1)。  相似文献   

16.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

17.
利用Gleeble-1500D热力模拟机对Cu-15Ni-8Sn合金进行热压缩试验,研究了该合金在变形温度700~900℃,应变速率为0.003~5 s-1,总变形量为60%下的热变形行为和热加工性能。结果表明:合金的流变应力随变形程度的增加先急剧增加到最大值后持续下降,流变应力峰值随温度升高而降低,随应变速率增加而增加。基于合金流变应力曲线关系分别构建了耦合应变的修正的Arrhenius双曲正弦模型和热加工图,并得到合金热变形激活能为195976 J·mol-1,试验范围内Cu-15Ni-8Sn合金最佳热加工参数:变形温度800~900℃,应变速率0.003~5 s-1。在较优工艺条件下,合金组织主要由动态再结晶晶粒和变形晶粒组成。  相似文献   

18.
用热模拟试验机、光学显微镜、MATLAB软件研究了双态组织Ti80合金在变形温度860 ~ 1020 ℃、应变速率0.001 ~ 10 s-1、最大变形量50%下的热变形和热加工特性。结果表明:Ti80合金为负温度敏感型、正应变速率敏感型材料,主要软化机制随温度的升高由动态再结晶转变为动态回复。利用MATLAB编程构建了应变补偿本构方程与热加工图,计算应力与试验应力的相关系数R=0.994、平均相对误差AARE=7.443%;合金最佳热加工工艺参数区间为:[980 ~ 1015 ℃]-[0.013 ~ 0.100 s-1],该区峰值功率耗散系数h=64%。  相似文献   

19.
在高温压缩试验数据的基础上,根据动态材料学模型(DMM)理论绘制了GH4169返回料合金的热加工图。采用氧氮元素分析及SEM进行分析,研究了返回料的添加对GH4169合金热变形行为的影响。结果表明:GH4169返回料合金在中、低应变速率下存在3个动态再结晶区域;在应变速率为10~(-2.5)~1 s~(-1)、变形温度为900~1 150℃的区域内,为合金的流变失稳区;返回料的添加使得合金中N、O元素的含量增加,形成大量显微疏松,成为高温变形过程中的裂纹扩展源,导致合金出现大面积的流变失稳。  相似文献   

20.
通过高温等温压缩试验,对Cu-Cr-Zr-Ti合金在700~900℃,应变速率0. 01~10 s-1的条件下高温热变形行为进行了研究。结果表明:合金的流变应力随温度的升高而减小,随应变速率的升高而增加。根据动态材料模型绘制了合金的热加工图,得到合金的最佳热加工参数为:温度900℃,应变速率0. 01 s-1。同时使用Johson-Mehl方程计算动态再结晶的体积分数,与EBSD测定的试验结果相近,表明Johson-Mehl方程在Cu-Cr-Zr-Ti合金中也具有适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号